Combinatorial Version of the Slepian-Wolf Coding Theorem for Binary Strings

D.A. Chumbalov

Moscow Institute of Physics and Technology
CCR 2013
Moscow, September 25

Problem statement.

Participants

Problem statement.

Participants

Alice

Problem statement.

Participants

Alice

Problem statement.

Participants

Problem statement.

- Alice is given a binary string $X,|X|=n$
- Bob is given a binary string $Y,|Y|=n$
- X and Y differ from each other in $c=c(n)$ positions

Problem statement.

- Alice is given a binary string $X,|X|=n$
- Bob is given a binary string $Y,|Y|=n$
- X and Y differ from each other in $c=c(n)$ positions
- Charlie wants to know both the strings X and Y
- Alice and Bob can send bits to Charlie

Problem statement.

- Alice is given a binary string $X,|X|=n$
- Bob is given a binary string $Y,|Y|=n$
- X and Y differ from each other in $c=c(n)$ positions
- Charlie wants to know both the strings X and Y
- Alice and Bob can send bits to Charlie
- All three participants know the parameters n and c.
- Alice is given a binary string $X,|X|=n$
- Bob is given a binary string $Y,|Y|=n$
- X and Y differ from each other in $c=c(n)$ positions
- Charlie wants to know both the strings X and Y
- Alice and Bob can send bits to Charlie
- All three participants know the parameters n and c.
- No communication is possible between Alice and Bob
- No feedback can be sent from Charlie to Alice and Bob.

- Alice sends Charlie some message of lengh r_{A}
- Bob sends Charlie some message of lengh r_{B}
- Charlie reconstructs X and Y from the pair $\left(r_{A}, r_{B}\right)$

Question.

Question:

For which pairs $\left(r_{A}, r_{B}\right)$ such a protocol exists?

Preparation

Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ be i.i.d. pairs of random variables (each x_{i} and y_{i} range over some finite sets A and B resp.).
Alice holds $X=\left(x_{1}, \ldots x_{n}\right)$ and Bob holds $Y=\left(y_{1}, \ldots, y_{n}\right)$.
A pair of reals $\left(R_{X}, R_{Y}\right)$ is called achievable if there exist functions

$$
\begin{aligned}
\operatorname{code}_{A, n}: A^{n} \rightarrow\{0,1\}^{n R_{X}} \\
\operatorname{code}_{B, n}: B^{n} \rightarrow\{0,1\}^{n R_{Y}} \\
\operatorname{decode}_{n}:\{0,1\}^{n R_{X}} \times\{0,1\}^{n R_{Y}} \rightarrow A^{n} \times B^{n}
\end{aligned}
$$

such that $\left.\operatorname{Prob}\left[\operatorname{decode}_{n}\left(\operatorname{code}_{A, n}(X), \operatorname{code}_{B, n}(Y)\right) \neq(X, Y)\right)\right] \rightarrow 0$ as $n \rightarrow \infty$.

Slepian-Wolf theorem.

[D. Slepian, J. K. Wolf, 1973]
A pair of reals $\left(R_{X}, R_{Y}\right)$ is achievable if

$$
\left\{\begin{array}{l}
R_{X}+R_{Y} \geq H(X, Y) \\
R_{X} \geq H(X \mid Y) \\
R_{Y} \geq H(Y \mid X)
\end{array}\right.
$$

Slepian-Wolf theorem.

Two main cases of the problem

- The distance between two strings c is an absolute constant
- The distance between two strings $c=\alpha n$, a constant fraction of n

Case 1: c is an absolute constant

Case 1: c is an absolute constant

Case 1: c is an absolute constant

Lower bound:

For every communication protocol for our problem

$$
\left\{\begin{array}{l}
r_{A}+r_{B} \geq n+\log _{2}\left(\sum_{k=0}^{c} C_{n}^{k}\right) \\
r_{A} \geq \log _{2}\left(\sum_{k=0}^{c} C_{n}^{k}\right) \\
r_{B} \geq \log _{2}\left(\sum_{k=0}^{c} C_{n}^{k}\right)
\end{array}\right.
$$

Case 1: c is an absolute constant

Lower bound:

For every communication protocol for our problem

$$
\left\{\begin{array}{l}
r_{A}+r_{B} \geq n+\log _{2}\left(\sum_{k=0}^{c} C_{n}^{k}\right), \\
r_{A} \geq \log _{2}\left(\sum_{k=0}^{c} C_{n}^{k}\right), \\
r_{B} \geq \log _{2}\left(\sum_{k=0}^{c} C_{n}^{k}\right)
\end{array}\right.
$$

Idea of the proof

Standard counting argument.

Case 1: c is an absolute constant

Case 1: c is an absolute constant

Upper bound:

For every c there exists a constant $d=d(c)$ such that our communication problem can be solved for all pairs $\left(r_{A}, r_{B}\right)$ satisfying inequalities

$$
\left\{\begin{array}{l}
r_{A}+r_{B}=n+\log _{2}\left(\sum_{k=0}^{c} C_{n}^{k}\right)+d, \\
r_{A} \geq \log _{2}\left(\sum_{k=0}^{c} C_{n}^{k}\right), \\
r_{B} \geq \log _{2}\left(\sum_{k=0}^{c} C_{n}^{k}\right) .
\end{array}\right.
$$

Moreover, there exists a communication protocol with effective (deterministic, polynomial in time) algorithms for all three participants.

Case 1: c is an absolute constant

Case 1: c is an absolute constant

Protocol: (for Alice and Bob)

(let H be the parity check matrix of the $\mathrm{BCH}(n, k, 2 c+1)$-code.)
(1) Send some parts of X and Y respectively
(2) Send syndromes $H \cdot X^{T}$ and $H \cdot Y^{T}$ respectively

\square - transmitted

- not transmitted

Case 1: c is an absolute constant

The total number of transmitted bits:

$n+c \log _{2} n+1=n+\log _{2}\left(\sum_{k=0}^{c} C_{n}^{k}\right)+\operatorname{const}(c)$.

Computations: (for Alice and Bob)
All in polynomial time.

Case 1: c is an absolute constant

Protocol: (for Charlie)

(1) Recieves all the transmitted information
(2) Restores the error pattern $E=X \oplus Y$ from the syndromes
(0) Reconstructs strings X and Y

Case 1: c is an absolute constant

Problem:

How to restore E ?

Case 1: c is an absolute constant

Problem:

How to restore E ?

Idea:

(1) $H X \oplus H Y=H(X \oplus Y)=H E$
(2) Find some word Z such that $H Z=H E$
(3) Find the nearest codeword to \hat{Z} to Z

Case 1: c is an absolute constant

Problem:

How to restore E ?

Idea:

(1) $H X \oplus H Y=H(X \oplus Y)=H E$
(2) Find some word Z such that $H Z=H E$
(3) Find the nearest codeword to \hat{Z} to Z

Statement:

$\hat{Z} \oplus Z=E$

Case 1: c is an absolute constant

We have an effective protocol that almost matches lower bounds.

Case 2: $c=\alpha n$

Case 2: c is a fraction α of n

Case 2: $c=\alpha n$

Lower bound:

For every communication protocol for our problem

$$
\left\{\begin{array}{l}
r_{A}+r_{B} \geq(1+h(\alpha)) n-o(n), \\
r_{A} \geq h(\alpha) n-o(n), \\
r_{B} \geq h(\alpha) n-o(n) .
\end{array}\right.
$$

where $h(\alpha)=\alpha \log _{2} \frac{1}{\alpha}+(1-\alpha) \log _{2} \frac{1}{1-\alpha}$.

Case 2: $c=\alpha n$

Lower bound:

For every communication protocol for our problem

$$
\left\{\begin{array}{l}
r_{A}+r_{B} \geq(1+h(\alpha)) n-o(n), \\
r_{A} \geq h(\alpha) n-o(n), \\
r_{B} \geq h(\alpha) n-o(n) .
\end{array}\right.
$$

where $h(\alpha)=\alpha \log _{2} \frac{1}{\alpha}+(1-\alpha) \log _{2} \frac{1}{1-\alpha}$.

Idea of the proof

The same as in the first case, plus $\sum_{k=0}^{\alpha n} C_{n}^{k}=2^{h(\alpha) n+o(n)}$.

Case 2: $c=\alpha n$

In the contrast to the first case not all the points satisfying these bounds can be achieved by some (deterministic) protocol.

Case 2: $c=\alpha n$

Case 2: $c=\alpha n$

A. Orlitsky, 2003

Case 2: $c=\alpha n$

A. Orlitsky, 2003

The pair $\left(r_{A}, r_{B}\right)=(n, h(\alpha) n)$ is not achievable.

Case 2: $c=\alpha n$

A. Orlitsky, 2003

The pair $\left(r_{A}, r_{B}\right)=(n, h(\alpha) n)$ is not achievable.
Let's try probabilistic protocols!

Case 2: $c=\alpha n$, probabilistic protocols

Lower bound:

For every $\epsilon<1 / 2$ the communication complexity of a probabilistic protocol satisfies

$$
\left\{\begin{array}{l}
r_{A}+r_{B} \geq(1+h(\alpha)) n-o(n) \\
r_{A} \geq h(\alpha) n-o(n) \\
r_{B} \geq h(\alpha) n-o(n)
\end{array}\right.
$$

Case 2: $c=\alpha n$, probabilistic protocols

Case 2: $c=\alpha n$, probabilistic protocols

Upper bound:

For every $\epsilon>0$, for $c=\alpha n$, and all pairs $\left(r_{A}, r_{B}\right)$ satisfying inequalities

$$
\left\{\begin{array}{l}
r_{A}+r_{B} \geq(1+h(\alpha)) n+o(n) \\
r_{A} \geq h(\alpha) n+o(n) \\
r_{B} \geq h(\alpha) n+o(n)
\end{array}\right.
$$

there exists a probabilistic protocol for our problem (with an error less than ϵ).

Case 2: $c=\alpha n$, probabilistic protocols

Idea:

Case 2: $c=\alpha n$, probabilistic protocols

Idea:

© "Old" protocol

Case 2: $c=\alpha n$, probabilistic protocols

Idea:

(1) "Old" protocol
(2) List-decodable codes (and list-decoding capacity theorem):

Case 2: $c=\alpha n$, probabilistic protocols

Idea:

(1) "Old" protocol
(2) List-decodable codes (and list-decoding capacity theorem):
((Random hashing

Case 2: $c=\alpha n$, probabilistic protocols

Sending part modernization:

(1) According to list-decoding capacity theorem participants chose a list-decodable code that corrects up to αn errors with the list's length L.
(2) Alice and Bob chose in advance an integer
$D=\frac{n L^{2}}{\epsilon} \log _{2} \frac{n L^{2}}{\epsilon}+o\left(\frac{n L^{2}}{\epsilon}\right)$
(3) Sending to Charlie the results of applying hash-functions based on random primary numbers from $[1, D]$ and the prime numbers themselves

Case 2: $c=\alpha n$, probabilistic protocols

Recieving part modernization:

(1) Charlie restores a constant (L)-length list of possible pairs (\hat{X}, \hat{Y}) and apply hash-functions to each pair
(2) He mathes the results with hash-results he recieved from Alice and Bob
(3) Take the first matched pair (\bar{X}, \bar{Y})
(1) $\operatorname{Prob}[(\bar{X}, \bar{Y}) \neq(X, Y)]<\epsilon$

Case 2: $c=\alpha n$, probabilistic protocols

The disadvantage of this protocol is that the participants need to perform exponentially long computations.

History of the problem:

(1) Probabilistic formulation: S-W theorem, 1973
(2) Probabilistic formulation: A protocol for any arbitrary constant c, 2005
(3) Combinatorial formulation: Constant fraction α : lower bounds and the solving probabilistic protocol, 2013

Open questions:

Open questions:

(1) Can we generalize Orlitsky's result?

Open questions:

(1) Can we generalize Orlitsky's result?
(2) An effective (randomized) polynomial protocol for $c=\alpha n$?

Thank you for your attention!

Questions?

