
Distributional proving problems

Edward A. Hirsch

(based on results of
E.A.H., D. Itsykson, I. Monakhov, V. Nikolaenko, A. Smal, D. Sokolov)

Steklov Institute of Mathematics at St.Petersburg, RAS
St.Petersburg Academic University, RAS

1 / 15

Motivation: Optimal algorithms

I Given a problem, even if there is no fast algorithm, what is the best one?
I Levin’s optimal algorithm for NP search problems is known since 1973:

I Run all algorithms A1,A2, . . . “in parallel”.
I Once Ai returns a satisfying assignment, verify it.

I The existence of optimal algorithms is not known for any decision
problem in NP \ P.
NB: search-to-decision reduction does not work: reduces to different instances

I ...and for any decision problem in co -NP \ P.
Optimal algorithms for TAUT are tightly related to optimal proof systems

I The best we can do is E \ P, for immune sets [Messner; Chen,Flum,Müller].

2 / 15

Motivation: Optimal algorithms

I Given a problem, even if there is no fast algorithm, what is the best one?
I Levin’s optimal algorithm for NP search problems is known since 1973:

I Run all algorithms A1,A2, . . . “in parallel”.
I Once Ai returns a satisfying assignment, verify it.

I The existence of optimal algorithms is not known for any decision
problem in NP \ P.
NB: search-to-decision reduction does not work: reduces to different instances

I ...and for any decision problem in co -NP \ P.
Optimal algorithms for TAUT are tightly related to optimal proof systems

I The best we can do is E \ P, for immune sets [Messner; Chen,Flum,Müller].

2 / 15

Motivation: Optimal algorithms

I Given a problem, even if there is no fast algorithm, what is the best one?
I Levin’s optimal algorithm for NP search problems is known since 1973:

I Run all algorithms A1,A2, . . . “in parallel”.
I Once Ai returns a satisfying assignment, verify it.

I The existence of optimal algorithms is not known for any decision
problem in NP \ P.
NB: search-to-decision reduction does not work: reduces to different instances

I ...and for any decision problem in co -NP \ P.
Optimal algorithms for TAUT are tightly related to optimal proof systems

I The best we can do is E \ P, for immune sets [Messner; Chen,Flum,Müller].

2 / 15

Motivation: Optimal algorithms

I Given a problem, even if there is no fast algorithm, what is the best one?
I Levin’s optimal algorithm for NP search problems is known since 1973:

I Run all algorithms A1,A2, . . . “in parallel”.
I Once Ai returns a satisfying assignment, verify it.

I The existence of optimal algorithms is not known for any decision
problem in NP \ P.
NB: search-to-decision reduction does not work: reduces to different instances

I ...and for any decision problem in co -NP \ P.
Optimal algorithms for TAUT are tightly related to optimal proof systems

I The best we can do is E \ P, for immune sets [Messner; Chen,Flum,Müller].

2 / 15

Distributional proving problems

Distributional proving problem (D, L) consists of
I a language L of “theorems”,
I a polynomial-time samplable distribution D = {Dn}n∈N on L.

Motivation:
I a small (wrt D) amount of wrong theorems is acceptable;
I not interested in what happens on statements that are not claimed;
I polynomial-time samplable distributions are concentrated on NP

languages, thus the definition is natural for L ∈ co -NP.

3 / 15

Related concepts

Distributional problems
I A distribution on all inputs.
I Gives no information about the problem.

Distributional proving problems
I A distribution on negative instances.
I Allows to verify an algorithm on counterexamples.
I There are natural polynomial-time samplable

distributions on all negative instances
(e.g., planted SAT).

PAC learning
I A distribution providing correct answers.
I Allows to verify an algorithm on all samples.
I Polynomial-time samplable distributions on all inputs are

unlikely to exist for NP-complete problems.
4 / 15

Heuristic acceptors

Definition
(Classical) acceptor A for L:
(completeness) A accepts every x ∈ L.
(correctness) A does not stop on any x /∈ L.

Complexity parameter: running time on L.

5 / 15

Heuristic acceptors

Distributional proving problem (D, L) consists of a language L of “theorems” and
a polynomial-time samplable distribution D = {Dn}n∈N on L.

Definition
Heuristic acceptor A(x , d) for (D, L): (d is the desired “confidence”)

(completeness) A(x , d) accepts every x ∈ L:

∀x ∈ L ∀d ∈ N A(x , d) = 1.

(correctness) A(r , d) makes few errors w.r.t. r ← Dn:

Prr←Dn {A(r , d) = 1} < 1
d (deterministic acceptor)

(correctness’) Prr←Dn ; A {A(r , d) = 1} < 1
d .

5 / 15

Heuristic acceptors

Distributional proving problem (D, L) consists of a language L of “theorems” and
a polynomial-time samplable distribution D = {Dn}n∈N on L.

Definition
Heuristic acceptor A(x , d) for (D, L): (d is the desired “confidence”)

(completeness) A(x , d) accepts every x ∈ L:
∀x ∈ L ∀d ∈ N A(x , d) = 1.

(correctness) A(r , d) makes few errors w.r.t. r ← Dn:
Prr←Dn {A(r , d) = 1} < 1

d (deterministic acceptor)

(correctness’) Prr←Dn ; A {A(r , d) = 1} < 1
d .

5 / 15

Heuristic acceptors

Distributional proving problem (D, L) consists of a language L of “theorems” and
a polynomial-time samplable distribution D = {Dn}n∈N on L.

Definition
Heuristic acceptor A(x , d) for (D, L): (d is the desired “confidence”)

(completeness) A(x , d) accepts every x ∈ L:
∀x ∈ L ∀d ∈ N A(x , d) = 1.

(correctness) A(r , d) makes few errors w.r.t. r ← Dn:
Prr←Dn {A(r , d) = 1} < 1

d (deterministic acceptor)

Prr←Dn

{
PrA{A(r , d) = 1} > 1

8

}
< 1

d (randomized acceptor)

(correctness’) Prr←Dn ; A {A(r , d) = 1} < 1
d .

5 / 15

Heuristic acceptors

Distributional proving problem (D, L) consists of a language L of “theorems” and
a polynomial-time samplable distribution D = {Dn}n∈N on L.

Definition
Heuristic acceptor A(x , d) for (D, L): (d is the desired “confidence”)

(completeness) A(x , d) accepts every x ∈ L:
∀x ∈ L ∀d ∈ N A(x , d) = 1.

(correctness) A(r , d) makes few errors w.r.t. r ← Dn:
Prr←Dn {A(r , d) = 1} < 1

d (deterministic acceptor)

Prr←Dn

{
PrA{A(r , d) = 1} > 1

8

}
< 1

d (randomized acceptor)

(correctness’) Prr←Dn ; A {A(r , d) = 1} < 1
d .

5 / 15

Heuristic acceptors

Distributional proving problem (D, L) consists of a language L of “theorems” and
a polynomial-time samplable distribution D = {Dn}n∈N on L.

Definition
Heuristic acceptor A(x , d) for (D, L): (d is the desired “confidence”)

(completeness) A(x , d) accepts every x ∈ L:
∀x ∈ L ∀d ∈ N A(x , d) = 1.

(correctness) A(r , d) makes few errors w.r.t. r ← Dn:
Prr←Dn {A(r , d) = 1} < 1

d (deterministic acceptor)

Prr←Dn

{
PrA{A(r , d) = 1} > 1

8

}
< 1

d (randomized acceptor)

(correctness’) Prr←Dn ; A {A(r , d) = 1} < 1
d .

I Time τA(x , d) is a random variable.
I tA(x , d) is the median (w.r.t. random bits) running time of A(x , d).
I Polynomial time ∼ polynomial in |x | and d .

5 / 15

Heuristic acceptors
Are there hard problems?

Theorem
∃ polynomial-time samplable D ∃L ∈ co -NP 6 ∃ polynomial-time heuristic
acceptor for (D, L) ⇐⇒ ∃ infinitely-often one-way function.

Proof.

I i.o. o.w.f. ⇒ i.o. PRG
(similar to [Håstad, Impagliazzo, Levin, Luby])

I i.o. PRG ⇒ hard problem for heuristic acceptors
(hint: PRG is a distribution)

I hard problem for heuristic acceptors ⇒ average-case o.w.f.
(hint: the sampler is difficult to invert)

I average-case o.w.f. ⇒ i.o. o.w.f.
(padding)

6 / 15

Optimal heuristic acceptor

Definition
(Classical) acceptor S simulates W if it runs almost as fast for each x ,
i.e., there is a polynomial p such that ∀x ∈ L, tS(x) ≤ p(tW (x) · |x |)).

7 / 15

Optimal heuristic acceptor

Definition
Heuristic acceptor S simulates W if
it runs almost as fast for each x and ≈the same confidence,
i.e., there are polynomials p and q such that ∀x ∈ L, ∀d ∈ N,

tS(x , d) ≤ max
d′≤q(d·|x|)

p(tW (x , d ′) · |x | · d).

Idea: Certify Ai by testing it on samples x ← Dn.

7 / 15

Optimal heuristic acceptor

Definition
Heuristic acceptor S simulates W if
it runs almost as fast for each x and ≈the same confidence,
i.e., there are polynomials p and q such that ∀x ∈ L, ∀d ∈ N,

tS(x , d) ≤ max
d′≤q(d·|x|)

p(tW (x , d ′) · |x | · d).

Idea: Certify Ai by testing it on samples x ← Dn.

Optimal heuristic acceptor U(x , d):

I For each i ≤ log |x | in parallel:
1. Execute Ai (x , d ′).

2. If it accepts (in Ti steps), test its correctness:
let Ei = 0 and execute k times:

I r ← D|x |,
I if Ai (r , d ′) = 1 in Ti steps, then Ei := Ei + 1;

3. If Ei < δk , output “1”.

7 / 15

Optimal heuristic acceptor

Definition
Heuristic acceptor S simulates W if
it runs almost as fast for each x and ≈the same confidence,
i.e., there are polynomials p and q such that ∀x ∈ L, ∀d ∈ N,

tS(x , d) ≤ max
d′≤q(d·|x|)

p(tW (x , d ′) · |x | · d).

Idea: Certify Ai by testing it on samples x ← Dn.

Optimal heuristic acceptor U(x , d):

I For each i ≤ log |x | in parallel:
1. Execute Ai (x , d ′).
2. If it accepts (in Ti steps), test its correctness:

let Ei = 0 and execute k times:
I r ← D|x |,
I if Ai (r , d ′) = 1 in Ti steps, then Ei := Ei + 1;

3. If Ei < δk , output “1”.

7 / 15

Optimal heuristic acceptor

Definition
Heuristic acceptor S simulates W if
it runs almost as fast for each x and ≈the same confidence,
i.e., there are polynomials p and q such that ∀x ∈ L, ∀d ∈ N,

tS(x , d) ≤ max
d′≤q(d·|x|)

p(tW (x , d ′) · |x | · d).

Idea: Certify Ai by testing it on samples x ← Dn.

Optimal heuristic acceptor U(x , d):

I For each i ≤ log |x | in parallel:
1. Execute Ai (x , d ′).
2. If it accepts (in Ti steps), test its correctness:

let Ei = 0 and execute k times:
I r ← D|x |,
I if Ai (r , d ′) = 1 in Ti steps, then Ei := Ei + 1;

3. If Ei < δk , output “1”. 7 / 15

Optimal heuristic acceptor

Definition
Heuristic acceptor S simulates W if
it runs almost as fast for each x and ≈the same confidence,
i.e., there are polynomials p and q such that ∀x ∈ L, ∀d ∈ N,

tS(x , d) ≤ max
d′≤q(d·|x|)

p(tW (x , d ′) · |x | · d).

Let d ′ = 4d |x |, k = 2d3|x |3, δ = 1
2d|x| .

Optimal heuristic acceptor U(x , d):

I For each i ≤ log |x | in parallel:
1. Execute Ai (x , d ′).
2. If it accepts (in Ti steps), test its correctness:

let Ei = 0 and execute k times:
I r ← D|x |,
I if Ai (r , d ′) = 1 in Ti steps, then Ei := Ei + 1;

3. If Ei < δk , output “1”. 7 / 15

Heuristic proof systems

I Probabilistic proof verification (with bounded error).
I Small fraction 1/d of false theorems (unbounded error).

8 / 15

Heuristic proof systems

I Probabilistic proof verification (with bounded error).
I Small fraction 1/d of false theorems (unbounded error).

Definition
Heuristic proof system for (D, L) is a polynomial-time Π such that
(completeness) There is a proof accepted whp

:
∀x ∈ L ∀d ∈ N ∃w Pr{Π(x ,w , d) = 1} > 1

2 .

(Such w is a Π-proof with confidence d .)

(correctness) Most non-theorems don’t have such proofs:

Prr←Dn{∃w {Pr{Π(r ,w , d) = 1} > 1
8}} <

1
d .

8 / 15

Heuristic proof systems

I Probabilistic proof verification (with bounded error).
I Small fraction 1/d of false theorems (unbounded error).

Definition
Heuristic proof system for (D, L) is a polynomial-time Π such that
(completeness) There is a proof accepted whp:

∀x ∈ L ∀d ∈ N ∃w Pr{Π(x ,w , d) = 1} > 1
2 .

(Such w is a Π-proof with confidence d .)
(correctness) Most non-theorems don’t have such proofs:

Prr←Dn{∃w {Pr{Π(r ,w , d) = 1} > 1
8}} <

1
d .

8 / 15

Turning AM protocols into heuristic proof systems

I Assume L ∈ AM.
(E.g., L = GNI, D samples random isomorphic graphs.)

I Consider a protocol (A,M) for L
(w.l.o.g., with perfect completeness and exponentially small error):

x ∈ L =⇒ ∀r ∃w A(x ,w , r) = 1,
x /∈ L =⇒ Pr

r
{∃w A(x ,w , r) = 1} < 2−|x |.

I Consider L′ = {(x , r) | x ∈ L}, where the length of r is enough to
make the public random choices.

I Consider D ′ = D × U, where D is any “original” distribution on L and
U is the uniform distribution.

9 / 15

Turning AM protocols into heuristic proof systems

I Assume L ∈ AM.
(E.g., L = GNI, D samples random isomorphic graphs.)

I Consider a protocol (A,M) for L
(w.l.o.g., with perfect completeness and exponentially small error):

x ∈ L =⇒ ∀r ∃w A(x ,w , r) = 1,
x /∈ L =⇒ Pr

r
{∃w A(x ,w , r) = 1} < 2−|x |.

I Consider L′ = {(x , r) | x ∈ L}, where the length of r is enough to
make the public random choices.

I Consider D ′ = D × U, where D is any “original” distribution on L and
U is the uniform distribution.

9 / 15

Turning AM protocols into heuristic proof systems

I Assume L ∈ AM.
(E.g., L = GNI, D samples random isomorphic graphs.)

I Consider a protocol (A,M) for L
(w.l.o.g., with perfect completeness and exponentially small error):

x ∈ L =⇒ ∀r ∃w A(x ,w , r) = 1,
x /∈ L =⇒ Pr

r
{∃w A(x ,w , r) = 1} < 2−|x |.

I Consider L′ = {(x , r) | x ∈ L}, where the length of r is enough to
make the public random choices.

I Consider D ′ = D × U, where D is any “original” distribution on L and
U is the uniform distribution.

Theorem (Itsykson, Sokolov)

(1) (L′,D ′) has a polynomially bounded heuristic p.s.
. . .

I Proof: Simulate A (first round) using r .
9 / 15

Turning AM protocols into heuristic proof systems
Discussion

I Consider L′ = {(x , r) | x ∈ L}, where the length of r is enough to make the
public random choices.

I Consider D ′ = D × U, where D is any “original” distribution on L and U is
the uniform distribution.

Question: Is there a classical polynomially bounded proof system for L′?
Answer:

Implies L ∈ NP.

Question: Is there a heuristic algorithm for (L′,D ′)?
Answer:

Implies randomized heuristic algorithm for (L,D).

Theorem (Itsykson, Sokolov)

(1) (L′,D ′) has a polynomially bounded heuristic p.s.

10 / 15

Turning AM protocols into heuristic proof systems
Discussion

I Consider L′ = {(x , r) | x ∈ L}, where the length of r is enough to make the
public random choices.

I Consider D ′ = D × U, where D is any “original” distribution on L and U is
the uniform distribution.

Question: Is there a classical polynomially bounded proof system for L′?
Answer: We don’t know.

Implies L ∈ NP.
Question: Is there a heuristic algorithm for (L′,D ′)?
Answer:

Implies randomized heuristic algorithm for (L,D).

Theorem (Itsykson, Sokolov)

(1) (L′,D ′) has a polynomially bounded heuristic p.s.

10 / 15

Turning AM protocols into heuristic proof systems
Discussion

I Consider L′ = {(x , r) | x ∈ L}, where the length of r is enough to make the
public random choices.

I Consider D ′ = D × U, where D is any “original” distribution on L and U is
the uniform distribution.

Question: Is there a classical polynomially bounded proof system for L′?
Answer: We don’t know.
Implies L ∈ NP.

Question: Is there a heuristic algorithm for (L′,D ′)?
Answer:

Implies randomized heuristic algorithm for (L,D).

Theorem (Itsykson, Sokolov)

(1) (L′,D ′) has a polynomially bounded heuristic p.s.
(2) if L′ ∈ NP, then L ∈ NP.

10 / 15

Turning AM protocols into heuristic proof systems
Discussion

I Consider L′ = {(x , r) | x ∈ L}, where the length of r is enough to make the
public random choices.

I Consider D ′ = D × U, where D is any “original” distribution on L and U is
the uniform distribution.

Question: Is there a classical polynomially bounded proof system for L′?
Answer: We don’t know.
Implies L ∈ NP.
Question: Is there a heuristic algorithm for (L′,D ′)?
Answer:

Implies randomized heuristic algorithm for (L,D).

Theorem (Itsykson, Sokolov)

(1) (L′,D ′) has a polynomially bounded heuristic p.s.
(2) if L′ ∈ NP, then L ∈ NP.

10 / 15

Turning AM protocols into heuristic proof systems
Discussion

I Consider L′ = {(x , r) | x ∈ L}, where the length of r is enough to make the
public random choices.

I Consider D ′ = D × U, where D is any “original” distribution on L and U is
the uniform distribution.

Question: Is there a classical polynomially bounded proof system for L′?
Answer: We don’t know.
Implies L ∈ NP.
Question: Is there a heuristic algorithm for (L′,D ′)?
Answer: We don’t know.

Implies randomized heuristic algorithm for (L,D).

Theorem (Itsykson, Sokolov)

(1) (L′,D ′) has a polynomially bounded heuristic p.s.
(2) if L′ ∈ NP, then L ∈ NP.

10 / 15

Turning AM protocols into heuristic proof systems
Discussion

I Consider L′ = {(x , r) | x ∈ L}, where the length of r is enough to make the
public random choices.

I Consider D ′ = D × U, where D is any “original” distribution on L and U is
the uniform distribution.

Question: Is there a classical polynomially bounded proof system for L′?
Answer: We don’t know.
Implies L ∈ NP.
Question: Is there a heuristic algorithm for (L′,D ′)?
Answer: We don’t know.
Implies randomized heuristic algorithm for (L,D).

Theorem (Itsykson, Sokolov)

(1) (L′,D ′) has a polynomially bounded heuristic p.s.
(2) if L′ ∈ NP, then L ∈ NP.
(3) if (L′,D ′) has polynomial-time heuristic acceptor, then (L,D) does. 10 / 15

Turning AM protocols into heuristic proof systems
Discussion

I Consider L′ = {(x , r) | x ∈ L}, where the length of r is enough to make the
public random choices.

I Consider D ′ = D × U, where D is any “original” distribution on L and U is
the uniform distribution.

Question: Is there a classical polynomially bounded proof system for L′?
Answer: We don’t know.
Implies L ∈ NP.
Question: Is there a heuristic algorithm for (L′,D ′)?
Answer: We don’t know.
Implies randomized heuristic algorithm for (L,D).

Theorem (Itsykson, Sokolov)

(1) (L′,D ′) has a polynomially bounded heuristic p.s.
(2) if ∀L L′ ∈ NP, then NP = co -NP.
(3) if ∀L,D (L′,D ′) has poly-time h.acc., then (NP,PSamp) does. 10 / 15

Optimal proof systems
Classical case

I A proof system Σ simulates a proof system Ω iff
Σ-proofs are at most as long as Ω-proofs (up to a polynomial p):

∀F ∈ L |shortest Σ-proof of F | ≤ p(|shortest Ω-proof of F |, |F |).

I p-simulation is a constructive version: For any w -size Ω-proof,
one can compute a p(w)-size Σ-proof in polynomial time.

I (p-)optimal proof system (p-)simulates any other proof system.
I Does it exist?..

Theorem
∃ p-optimal proof system ⇐⇒ ∃ optimal acceptor.
For TAUT: [Kraj́ıcek, Pudlák].
For paddable languages: [Messner].
For co -NP-complete languages: [Chen, Flüm, Müller].

11 / 15

Optimal proof systems
Classical case

I A proof system Σ simulates a proof system Ω iff
Σ-proofs are at most as long as Ω-proofs (up to a polynomial p):

∀F ∈ L |shortest Σ-proof of F | ≤ p(|shortest Ω-proof of F |, |F |).

I p-simulation is a constructive version: For any w -size Ω-proof,
one can compute a p(w)-size Σ-proof in polynomial time.

I (p-)optimal proof system (p-)simulates any other proof system.
I Does it exist?..

Theorem
∃ p-optimal proof system ⇐⇒ ∃ optimal acceptor.
For TAUT: [Kraj́ıcek, Pudlák].
For paddable languages: [Messner].
For co -NP-complete languages: [Chen, Flüm, Müller].

11 / 15

From acceptors to proof systems

Definition
L is paddable if there is an injective non-length-decreasing polynomial-time
padding function padL : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ that is polynomial-time
invertible on its image and such that ∀x ,w (x ∈ L ⇐⇒ padL(x ,w) ∈ L).

Optimal proof [Messner, 99]:
I A proof π of x in some system Π;
I padding.

Verification:
I run optimal acceptor on padL(x , π);
I for a correct proof π, it accepts in a polynomial time because for a

correct system Π, the set {padL(x , π) | x ∈ L, Π(x , π) = 1} ⊆ L can
be accepted in a polynomial time.

I Messner’s proof goes for randomized algorithms.
I Does not go for heuristic, average-case algorithms.

12 / 15

From acceptors to proof systems

Optimal proof [Messner, 99]:
I A proof π of x in some system Π;
I padding.

Verification:
I run optimal acceptor on padL(x , π);
I for a correct proof π, it accepts in a polynomial time because for a

correct system Π, the set {padL(x , π) | x ∈ L, Π(x , π) = 1} ⊆ L can
be accepted in a polynomial time.

Applicability:
I Messner’s proof goes for randomized algorithms.

I Does not go for heuristic, average-case algorithms.

12 / 15

From acceptors to proof systems

Optimal proof [Messner, 99]:
I A proof π of x in some system Π;
I padding.

Verification:
I run optimal acceptor on padL(x , π);
I for a correct proof π, it accepts in a polynomial time because for a

correct system Π, the set {padL(x , π) | x ∈ L, Π(x , π) = 1} ⊆ L can
be accepted in a polynomial time.

Applicability:
I Messner’s proof goes for randomized algorithms.
I Does not go for heuristic, average-case algorithms.

12 / 15

Simulations

I pointwise simulation A ≺ B:
∃ polynomial p ∀x

tA(x) ≤ p(tB(x) + |x |)

I (weaker) average-case simulation A ≺D B w.r.t. D:
∀ε > 0 ∃c > 0

E
x←Dn

[tAc(x)] = O(n E
y←Dn

[tBε(y)])

I (weaker) simulation scheme:
simulate everywhere except for the set of D-prob. 1/2d .

I (yet weaker!) worst-case simulation A ≺wc B:
∃ polynomials p, q ∀x

tA(x) ≤ p(max
|x′|≤q(|x|)

x′∈L

tB(x ′) + |x |)

13 / 15

Simulations

I pointwise simulation A ≺ B:
∃ polynomial p ∀x

tA(x) ≤ p(tB(x) + |x |)

I (weaker) average-case simulation A ≺D B w.r.t. D:
∀ε > 0 ∃c > 0

E
x←Dn

[tAc(x)] = O(n E
y←Dn

[tBε(y)])

I (weaker) simulation scheme:
simulate everywhere except for the set of D-prob. 1/2d .

I (yet weaker!) worst-case simulation A ≺wc B:
∃ polynomials p, q ∀x

tA(x) ≤ p(max
|x′|≤q(|x|)

x′∈L

tB(x ′) + |x |)

13 / 15

Simulations

I pointwise simulation A ≺ B:
∃ polynomial p ∀x

tA(x) ≤ p(tB(x) + |x |)
I (weaker) average-case simulation A ≺D B w.r.t. D:
∀ε > 0 ∃c > 0

E
x←Dn

[tAc(x)] = O(n E
y←Dn

[tBε(y)])

I (weaker) simulation scheme:
simulate everywhere except for the set of D-prob. 1/2d .

I (yet weaker!) worst-case simulation A ≺wc B:
∃ polynomials p, q ∀x

tA(x) ≤ p(max
|x′|≤q(|x|)

x′∈L

tB(x ′) + |x |)

13 / 15

Simulations

I pointwise simulation A ≺ B:
∃ polynomial p ∀x

tA(x) ≤ p(tB(x) + |x |)
I (weaker) average-case simulation A ≺D B w.r.t. D:
∀ε > 0 ∃c > 0

E
x←Dn

[tAc(x)] = O(n E
y←Dn

[tBε(y)])

I (weaker) simulation scheme:
simulate everywhere except for the set of D-prob. 1/2d .

I (yet weaker!) worst-case simulation A ≺wc B:
∃ polynomials p, q ∀x

tA(x) ≤ p(max
|x′|≤q(|x|)

x′∈L

tB(x ′) + |x |)

13 / 15

Problems and complexities

I Decision problem L: is x ∈ L?
Solved by decision algorithms: complexity measure = time.

I Same problem, solved by acceptors: complexity measure = time on L.

I worst-case optimal acceptor for NP-complete problems:
I worst-case (and stronger) optimal randomized acceptor for GNI.

II Distributional problem (D, L): is x ∈ L with accuracy d?
Complexity measure = time(n, d).
Errorless average-case complexity: estimate E or give up with D-prob. 1/d .

I average-case optimal randomized acceptor for GNI for some D.
I Same problem, solved by heuristic algorithms:

allow false negatives and positives with D-prob. 1/d .
I pointwise optimal randomized algorithm for Im of an injective function,
I “scheme-optimal” deterministic algorithm for —”—”—.

I Distributional proving problem (D, L): suppD ⊆ L.
Solved by heuristic acceptors, may allow false positives only.

I pointwise optimal randomized heuristic acceptor for p.-t.s. D, r.e. L.

14 / 15

Problems and complexities

I Decision problem L: is x ∈ L?
Solved by decision algorithms: complexity measure = time.

I Same problem, solved by acceptors: complexity measure = time on L.

I worst-case optimal acceptor for NP-complete problems:
I worst-case (and stronger) optimal randomized acceptor for GNI.

II Distributional problem (D, L): is x ∈ L with accuracy d?
Complexity measure = time(n, d).
Errorless average-case complexity: estimate E or give up with D-prob. 1/d .

I average-case optimal randomized acceptor for GNI for some D.
I Same problem, solved by heuristic algorithms:

allow false negatives and positives with D-prob. 1/d .
I pointwise optimal randomized algorithm for Im of an injective function,
I “scheme-optimal” deterministic algorithm for —”—”—.

I Distributional proving problem (D, L): suppD ⊆ L.
Solved by heuristic acceptors, may allow false positives only.

I pointwise optimal randomized heuristic acceptor for p.-t.s. D, r.e. L.

14 / 15

Problems and complexities

I Decision problem L: is x ∈ L?
Solved by decision algorithms: complexity measure = time.

I Same problem, solved by acceptors: complexity measure = time on L.
I worst-case optimal acceptor for NP-complete problems:

I worst-case (and stronger) optimal randomized acceptor for GNI.

II Distributional problem (D, L): is x ∈ L with accuracy d?
Complexity measure = time(n, d).
Errorless average-case complexity: estimate E or give up with D-prob. 1/d .

I average-case optimal randomized acceptor for GNI for some D.
I Same problem, solved by heuristic algorithms:

allow false negatives and positives with D-prob. 1/d .
I pointwise optimal randomized algorithm for Im of an injective function,
I “scheme-optimal” deterministic algorithm for —”—”—.

I Distributional proving problem (D, L): suppD ⊆ L.
Solved by heuristic acceptors, may allow false positives only.

I pointwise optimal randomized heuristic acceptor for p.-t.s. D, r.e. L.

14 / 15

Problems and complexities

I Decision problem L: is x ∈ L?
Solved by decision algorithms: complexity measure = time.

I Same problem, solved by acceptors: complexity measure = time on L.
I worst-case optimal acceptor for NP-complete problems:

Levin’s universal search + self-to-decision reduction.
I worst-case (and stronger) optimal randomized acceptor for GNI:

verification by Goldwasser-Micali-Sipser protocol.

II Distributional problem (D, L): is x ∈ L with accuracy d?
Complexity measure = time(n, d).
Errorless average-case complexity: estimate E or give up with D-prob. 1/d .

I average-case optimal randomized acceptor for GNI for some D.
I Same problem, solved by heuristic algorithms:

allow false negatives and positives with D-prob. 1/d .
I pointwise optimal randomized algorithm for Im of an injective function,
I “scheme-optimal” deterministic algorithm for —”—”—.

I Distributional proving problem (D, L): suppD ⊆ L.
Solved by heuristic acceptors, may allow false positives only.

I pointwise optimal randomized heuristic acceptor for p.-t.s. D, r.e. L.

14 / 15

Problems and complexities

I Decision problem L: is x ∈ L?
Solved by decision algorithms: complexity measure = time.

I Same problem, solved by acceptors: complexity measure = time on L.
I worst-case optimal acceptor for NP-complete problems:

Levin’s universal search + self-to-decision reduction.
I worst-case (and stronger) optimal randomized acceptor for GNI.
I pointwise-optimal acceptor for Time(f)-immune sets [Messner],

pointwise-optimal algorithm for bi-immune sets [Chen,Flum,Müller].

I Distributional problem (D, L): is x ∈ L with accuracy d?
Complexity measure = time(n, d).
Errorless average-case complexity: estimate E or give up with D-prob. 1/d .

I average-case optimal randomized acceptor for GNI for some D.
I Same problem, solved by heuristic algorithms:

allow false negatives and positives with D-prob. 1/d .
I pointwise optimal randomized algorithm for Im of an injective function,
I “scheme-optimal” deterministic algorithm for —”—”—.

I Distributional proving problem (D, L): suppD ⊆ L.
Solved by heuristic acceptors, may allow false positives only.

I pointwise optimal randomized heuristic acceptor for p.-t.s. D, r.e. L.

14 / 15

Problems and complexities

I Decision problem L: is x ∈ L?
Solved by decision algorithms: complexity measure = time.

I Same problem, solved by acceptors: complexity measure = time on L.
I worst-case optimal acceptor for NP-complete problems:

Levin’s universal search + self-to-decision reduction.
I worst-case (and stronger) optimal randomized acceptor for GNI.
I pointwise-optimal acceptor, algorithm for a set in E \ P.

I Distributional problem (D, L): is x ∈ L with accuracy d?
Complexity measure = time(n, d).
Errorless average-case complexity: estimate E or give up with D-prob. 1/d .

I average-case optimal randomized acceptor for GNI for some D.

I Same problem, solved by heuristic algorithms:
allow false negatives and positives with D-prob. 1/d .

I pointwise optimal randomized algorithm for Im of an injective function,
I “scheme-optimal” deterministic algorithm for —”—”—.

I Distributional proving problem (D, L): suppD ⊆ L.
Solved by heuristic acceptors, may allow false positives only.

I pointwise optimal randomized heuristic acceptor for p.-t.s. D, r.e. L.

14 / 15

Problems and complexities

I Decision problem L: is x ∈ L?
Solved by decision algorithms: complexity measure = time.

I Same problem, solved by acceptors: complexity measure = time on L.
I worst-case optimal acceptor for NP-complete problems:

Levin’s universal search + self-to-decision reduction.
I worst-case (and stronger) optimal randomized acceptor for GNI.
I pointwise-optimal acceptor, algorithm for a set in E \ P.

I Distributional problem (D, L): is x ∈ L with accuracy d?
Complexity measure = time(n, d).
Errorless average-case complexity: estimate E or give up with D-prob. 1/d .

I average-case optimal randomized acceptor for GNI for some D.
I Same problem, solved by heuristic algorithms:

allow false negatives and positives with D-prob. 1/d .
I pointwise optimal randomized algorithm for Im of an injective function,
I “scheme-optimal” deterministic algorithm for —”—”—.

I Distributional proving problem (D, L): suppD ⊆ L.
Solved by heuristic acceptors, may allow false positives only.

I pointwise optimal randomized heuristic acceptor for p.-t.s. D, r.e. L.

14 / 15

Problems and complexities

I Decision problem L: is x ∈ L?
Solved by decision algorithms: complexity measure = time.

I Same problem, solved by acceptors: complexity measure = time on L.
I worst-case optimal acceptor for NP-complete problems:

Levin’s universal search + self-to-decision reduction.
I worst-case (and stronger) optimal randomized acceptor for GNI.
I pointwise-optimal acceptor, algorithm for a set in E \ P.

I Distributional problem (D, L): is x ∈ L with accuracy d?
Complexity measure = time(n, d).
Errorless average-case complexity: estimate E or give up with D-prob. 1/d .

I average-case optimal randomized acceptor for GNI for some D.
I Same problem, solved by heuristic algorithms:

allow false negatives and positives with D-prob. 1/d .
I pointwise optimal randomized algorithm for Im of an injective function,
I “scheme-optimal” deterministic algorithm for —”—”—.

I Distributional proving problem (D, L): suppD ⊆ L.
Solved by heuristic acceptors, may allow false positives only.

I pointwise optimal randomized heuristic acceptor for p.-t.s. D, r.e. L.14 / 15

Open questions

I ∃ optimal proof system ⇐⇒ ∃ optimal heuristic acceptor;

I ∃ optimal heuristic proof system ?⇐⇒ ∃ optimal heuristic acceptor;

I ∃ optimal proof system with advice ?⇐⇒ ∃ optimal acceptor with advice;
I ∃ average-case optimal acceptor?
I ∃ optimal acceptor for GNI or any other co -NP \ P problem?
I ∃ optimal proof system for any problem outside P?
I ∃(D, L) ∈ (co -NP,PSamplable) with no polynomially-bounded heuristic

proof system ⇐⇒ ?
I AM protocols make deterministic (heuristic) proof systems with very small

error; suggest another example: randomized and with larger error.

15 / 15

