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Motivation: Optimal algorithms

I Given a problem, even if there is no fast algorithm, what is the best one?
I Levin’s optimal algorithm for NP search problems is known since 1973:

I Run all algorithms A1,A2, . . . “in parallel”.
I Once Ai returns a satisfying assignment, verify it.

I The existence of optimal algorithms is not known for any decision
problem in NP \ P.
NB: search-to-decision reduction does not work: reduces to different instances

I ...and for any decision problem in co -NP \ P.
Optimal algorithms for TAUT are tightly related to optimal proof systems

I The best we can do is E \ P, for immune sets [Messner; Chen,Flum,Müller].
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Distributional proving problems

Distributional proving problem (D, L) consists of
I a language L of “theorems”,
I a polynomial-time samplable distribution D = {Dn}n∈N on L.

Motivation:
I a small (wrt D) amount of wrong theorems is acceptable;
I not interested in what happens on statements that are not claimed;
I polynomial-time samplable distributions are concentrated on NP

languages, thus the definition is natural for L ∈ co -NP.
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Related concepts

Distributional problems
I A distribution on all inputs.
I Gives no information about the problem.

Distributional proving problems
I A distribution on negative instances.
I Allows to verify an algorithm on counterexamples.
I There are natural polynomial-time samplable

distributions on all negative instances
(e.g., planted SAT).

PAC learning
I A distribution providing correct answers.
I Allows to verify an algorithm on all samples.
I Polynomial-time samplable distributions on all inputs are

unlikely to exist for NP-complete problems.
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Heuristic acceptors

Definition
(Classical) acceptor A for L:
(completeness) A accepts every x ∈ L.
(correctness) A does not stop on any x /∈ L.

Complexity parameter: running time on L.
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Heuristic acceptors

Distributional proving problem (D, L) consists of a language L of “theorems” and
a polynomial-time samplable distribution D = {Dn}n∈N on L.

Definition
Heuristic acceptor A(x , d) for (D, L): (d is the desired “confidence”)

(completeness) A(x , d) accepts every x ∈ L:

∀x ∈ L ∀d ∈ N A(x , d) = 1.

(correctness) A(r , d) makes few errors w.r.t. r ← Dn:

Prr←Dn {A(r , d) = 1} < 1
d (deterministic acceptor)

(correctness’) Prr←Dn ; A {A(r , d) = 1} < 1
d .

5 / 15



Heuristic acceptors

Distributional proving problem (D, L) consists of a language L of “theorems” and
a polynomial-time samplable distribution D = {Dn}n∈N on L.

Definition
Heuristic acceptor A(x , d) for (D, L): (d is the desired “confidence”)

(completeness) A(x , d) accepts every x ∈ L:
∀x ∈ L ∀d ∈ N A(x , d) = 1.

(correctness) A(r , d) makes few errors w.r.t. r ← Dn:
Prr←Dn {A(r , d) = 1} < 1

d (deterministic acceptor)

(correctness’) Prr←Dn ; A {A(r , d) = 1} < 1
d .

5 / 15



Heuristic acceptors

Distributional proving problem (D, L) consists of a language L of “theorems” and
a polynomial-time samplable distribution D = {Dn}n∈N on L.

Definition
Heuristic acceptor A(x , d) for (D, L): (d is the desired “confidence”)

(completeness) A(x , d) accepts every x ∈ L:
∀x ∈ L ∀d ∈ N A(x , d) = 1.

(correctness) A(r , d) makes few errors w.r.t. r ← Dn:
Prr←Dn {A(r , d) = 1} < 1

d (deterministic acceptor)

Prr←Dn

{
PrA{A(r , d) = 1} > 1

8

}
< 1

d (randomized acceptor)

(correctness’) Prr←Dn ; A {A(r , d) = 1} < 1
d .

5 / 15



Heuristic acceptors

Distributional proving problem (D, L) consists of a language L of “theorems” and
a polynomial-time samplable distribution D = {Dn}n∈N on L.

Definition
Heuristic acceptor A(x , d) for (D, L): (d is the desired “confidence”)

(completeness) A(x , d) accepts every x ∈ L:
∀x ∈ L ∀d ∈ N A(x , d) = 1.

(correctness) A(r , d) makes few errors w.r.t. r ← Dn:
Prr←Dn {A(r , d) = 1} < 1

d (deterministic acceptor)

Prr←Dn

{
PrA{A(r , d) = 1} > 1

8

}
< 1

d (randomized acceptor)

(correctness’) Prr←Dn ; A {A(r , d) = 1} < 1
d .

5 / 15



Heuristic acceptors

Distributional proving problem (D, L) consists of a language L of “theorems” and
a polynomial-time samplable distribution D = {Dn}n∈N on L.

Definition
Heuristic acceptor A(x , d) for (D, L): (d is the desired “confidence”)

(completeness) A(x , d) accepts every x ∈ L:
∀x ∈ L ∀d ∈ N A(x , d) = 1.

(correctness) A(r , d) makes few errors w.r.t. r ← Dn:
Prr←Dn {A(r , d) = 1} < 1

d (deterministic acceptor)

Prr←Dn

{
PrA{A(r , d) = 1} > 1

8

}
< 1

d (randomized acceptor)

(correctness’) Prr←Dn ; A {A(r , d) = 1} < 1
d .

I Time τA(x , d) is a random variable.
I tA(x , d) is the median (w.r.t. random bits) running time of A(x , d).
I Polynomial time ∼ polynomial in |x | and d .
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Heuristic acceptors
Are there hard problems?

Theorem
∃ polynomial-time samplable D ∃L ∈ co -NP 6 ∃ polynomial-time heuristic
acceptor for (D, L) ⇐⇒ ∃ infinitely-often one-way function.

Proof.

I i.o. o.w.f. ⇒ i.o. PRG
(similar to [Håstad, Impagliazzo, Levin, Luby])

I i.o. PRG ⇒ hard problem for heuristic acceptors
(hint: PRG is a distribution)

I hard problem for heuristic acceptors ⇒ average-case o.w.f.
(hint: the sampler is difficult to invert)

I average-case o.w.f. ⇒ i.o. o.w.f.
(padding)
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Optimal heuristic acceptor

Definition
(Classical) acceptor S simulates W if it runs almost as fast for each x ,
i.e., there is a polynomial p such that ∀x ∈ L, tS(x) ≤ p(tW (x) · |x |)).
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Optimal heuristic acceptor

Definition
Heuristic acceptor S simulates W if
it runs almost as fast for each x and ≈the same confidence,
i.e., there are polynomials p and q such that ∀x ∈ L, ∀d ∈ N,

tS(x , d) ≤ max
d′≤q(d·|x|)

p(tW (x , d ′) · |x | · d).

Idea: Certify Ai by testing it on samples x ← Dn.
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I if Ai (r , d ′) = 1 in Ti steps, then Ei := Ei + 1;

3. If Ei < δk , output “1”.
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Heuristic proof systems

I Probabilistic proof verification (with bounded error).
I Small fraction 1/d of false theorems (unbounded error).
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(completeness) There is a proof accepted whp
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∀x ∈ L ∀d ∈ N ∃w Pr{Π(x ,w , d) = 1} > 1

2 .

(Such w is a Π-proof with confidence d .)

(correctness) Most non-theorems don’t have such proofs:

Prr←Dn{∃w {Pr{Π(r ,w , d) = 1} > 1
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Turning AM protocols into heuristic proof systems

I Assume L ∈ AM.
(E.g., L = GNI, D samples random isomorphic graphs.)

I Consider a protocol (A,M) for L
(w.l.o.g., with perfect completeness and exponentially small error):

x ∈ L =⇒ ∀r ∃w A(x ,w , r) = 1,
x /∈ L =⇒ Pr

r
{∃w A(x ,w , r) = 1} < 2−|x |.

I Consider L′ = {(x , r) | x ∈ L}, where the length of r is enough to
make the public random choices.

I Consider D ′ = D × U, where D is any “original” distribution on L and
U is the uniform distribution.
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I Consider a protocol (A,M) for L
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r
{∃w A(x ,w , r) = 1} < 2−|x |.

I Consider L′ = {(x , r) | x ∈ L}, where the length of r is enough to
make the public random choices.

I Consider D ′ = D × U, where D is any “original” distribution on L and
U is the uniform distribution.

Theorem (Itsykson, Sokolov)

(1) (L′,D ′) has a polynomially bounded heuristic p.s.
. . .

I Proof: Simulate A (first round) using r .
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Turning AM protocols into heuristic proof systems
Discussion

I Consider L′ = {(x , r) | x ∈ L}, where the length of r is enough to make the
public random choices.

I Consider D ′ = D × U, where D is any “original” distribution on L and U is
the uniform distribution.

Question: Is there a classical polynomially bounded proof system for L′?
Answer:

Implies L ∈ NP.

Question: Is there a heuristic algorithm for (L′,D ′)?
Answer:

Implies randomized heuristic algorithm for (L,D).

Theorem (Itsykson, Sokolov)

(1) (L′,D ′) has a polynomially bounded heuristic p.s.
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Turning AM protocols into heuristic proof systems
Discussion

I Consider L′ = {(x , r) | x ∈ L}, where the length of r is enough to make the
public random choices.

I Consider D ′ = D × U, where D is any “original” distribution on L and U is
the uniform distribution.

Question: Is there a classical polynomially bounded proof system for L′?
Answer: We don’t know.
Implies L ∈ NP.
Question: Is there a heuristic algorithm for (L′,D ′)?
Answer: We don’t know.
Implies randomized heuristic algorithm for (L,D).

Theorem (Itsykson, Sokolov)

(1) (L′,D ′) has a polynomially bounded heuristic p.s.
(2) if ∀L L′ ∈ NP, then NP = co -NP.
(3) if ∀L,D (L′,D ′) has poly-time h.acc., then (NP,PSamp) does. 10 / 15



Optimal proof systems
Classical case

I A proof system Σ simulates a proof system Ω iff
Σ-proofs are at most as long as Ω-proofs (up to a polynomial p):

∀F ∈ L |shortest Σ-proof of F | ≤ p(|shortest Ω-proof of F |, |F |).

I p-simulation is a constructive version: For any w -size Ω-proof,
one can compute a p(w)-size Σ-proof in polynomial time.

I (p-)optimal proof system (p-)simulates any other proof system.
I Does it exist?..

Theorem
∃ p-optimal proof system ⇐⇒ ∃ optimal acceptor.
For TAUT: [Kraj́ıcek, Pudlák].
For paddable languages: [Messner].
For co -NP-complete languages: [Chen, Flüm, Müller].
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From acceptors to proof systems

Definition
L is paddable if there is an injective non-length-decreasing polynomial-time
padding function padL : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ that is polynomial-time
invertible on its image and such that ∀x ,w (x ∈ L ⇐⇒ padL(x ,w) ∈ L).

Optimal proof [Messner, 99]:
I A proof π of x in some system Π;
I padding.

Verification:
I run optimal acceptor on padL(x , π);
I for a correct proof π, it accepts in a polynomial time because for a

correct system Π, the set {padL(x , π) | x ∈ L, Π(x , π) = 1} ⊆ L can
be accepted in a polynomial time.

I Messner’s proof goes for randomized algorithms.
I Does not go for heuristic, average-case algorithms.
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Simulations

I pointwise simulation A ≺ B:
∃ polynomial p ∀x

tA(x) ≤ p(tB(x) + |x |)

I (weaker) average-case simulation A ≺D B w.r.t. D:
∀ε > 0 ∃c > 0

E
x←Dn

[tAc(x)] = O(n E
y←Dn

[tBε(y)])

I (weaker) simulation scheme:
simulate everywhere except for the set of D-prob. 1/2d .

I (yet weaker!) worst-case simulation A ≺wc B:
∃ polynomials p, q ∀x

tA(x) ≤ p( max
|x′|≤q(|x|)

x′∈L

tB(x ′) + |x |)
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Problems and complexities

I Decision problem L: is x ∈ L?
Solved by decision algorithms: complexity measure = time.

I Same problem, solved by acceptors: complexity measure = time on L.

I worst-case optimal acceptor for NP-complete problems:
I worst-case (and stronger) optimal randomized acceptor for GNI.

II Distributional problem (D, L): is x ∈ L with accuracy d?
Complexity measure = time(n, d).
Errorless average-case complexity: estimate E or give up with D-prob. 1/d .

I average-case optimal randomized acceptor for GNI for some D.
I Same problem, solved by heuristic algorithms:

allow false negatives and positives with D-prob. 1/d .
I pointwise optimal randomized algorithm for Im of an injective function,
I “scheme-optimal” deterministic algorithm for —”—”—.

I Distributional proving problem (D, L): suppD ⊆ L.
Solved by heuristic acceptors, may allow false positives only.

I pointwise optimal randomized heuristic acceptor for p.-t.s. D, r.e. L.
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Open questions

I ∃ optimal proof system ⇐⇒ ∃ optimal heuristic acceptor;

I ∃ optimal heuristic proof system ?⇐⇒ ∃ optimal heuristic acceptor;

I ∃ optimal proof system with advice ?⇐⇒ ∃ optimal acceptor with advice;
I ∃ average-case optimal acceptor?
I ∃ optimal acceptor for GNI or any other co -NP \ P problem?
I ∃ optimal proof system for any problem outside P?
I ∃(D, L) ∈ (co -NP,PSamplable) with no polynomially-bounded heuristic

proof system ⇐⇒ ?
I AM protocols make deterministic (heuristic) proof systems with very small

error; suggest another example: randomized and with larger error.
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