
Entropy and Speed of Turing machines

E. Jeandel

LORIA (Nancy, France)

E. Jeandel, Entropy and Speed of Turing machines 1/39



Context

Turing machines with one head and one tape.
States Q
Symbols ⌃.
Transition map: Q ⇥ ⌃ ! Q ⇥ ⌃⇥ {�1, 1}

Turing machines as a dynamical system: M : Q ⇥ ⌃Z ! Q ⇥ ⌃Z

(the tape moves, not the head)

No specified initial state (very important)
No specified initial configuration (crucial)
Might have final states (anecdotal)
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TM as a DS

Seeing Turing machines as a dynamical system changes a lot of
things:

Interested in the behaviour starting from all configurations, not
only one configuration.
Hard to conceive of a TM with no (temporally) periodic
configurations.
Nevertheless, intricate TMs do exist.
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TM as a DS

Theorem (essentially Turing 1937)
There is no algorithm to decide whether a TM does not halt on its input
configuration.

Theorem (Hooper 1966)
There is no algorithm to decide whether a TM does not halt on some
input configuration.

simplified proof by Kari-Ollinger (2008), which leads to the
undecidability of the existence of a periodic point.
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TM as a DS

Theorem (essentially the definition)
For every ⇧0

1 class S, there exists a TM for which the set S0 of inputs
(starting from the initial state) on which the TM halts is Medvedev
equivalent to S.

Theorem (Jeandel 2012)
For every ⇧0

1 class S, there exists a TM for which the set S0 of inputs
on which the TM halts is Muchnik equivalent to S.
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Dynamical Systems

Part of a recent trend which sees computational models as dynamical
systems.
Good alternative to the classical Robinson technique for tilings:

Turing machines (as a Dyn. Sys.) can be easily encoded into
piecewise affine maps.
Piecewise affine maps can be easily encoded into tilings

The previous result about Muchnik equivalence can be transcoded into
a result about tilings, which would be slightly weaker than Simpson
2013 (which have a Medvedev equivalence).
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This talk

We will show why some thing are actually computable for 1-tape Turing
machines, namely:

its speed
its entropy
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Speed

For c a configuration, let Sn(c) be the set of (different) cells visited
during the first n steps of the computation on input c, and
sn(c) = #Sn(c)

sn(c) is (Kingman)-subadditive

sn+m(c)  sn(c) + sm(Mn(c))

If d(x , y)  2�sn(x) then d(Mn(x),Mn(y))  1/2.
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Speed

s(c) = lim sup
sn(c)

n
s(c) = lim inf

sn(c)
n

If lim inf = lim sup, we denote by s(c) the speed of c.
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Some example(s)

Consider a Turing machine that stays in the same direction when
reading a symbol a, and changes direction when reading a b
(changing it into an a)

E. Jeandel, Entropy and Speed of Turing machines 10/39



Some example(s)

Consider a Turing machine that stays in the same direction when
reading a symbol a, and changes direction when reading a b
(changing it into an a)

If c contains only a’s,
s(c) = 1.

t

n0 nn
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Some example(s)

Consider a Turing machine that stays in the same direction when
reading a symbol a, and changes direction when reading a b
(changing it into an a)

If c contains only b’s,
s(c) = 0.

t

0 nn(2n � 1)
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Some example(s)

Consider a Turing machine that stays in the same direction when
reading a symbol a, and changes direction when reading a b
(changing it into an a)

If c contains b at posi-
tions (�2)i

s(c) = 1/3, s(c) = 1/2

t

02n�2 2n2n�1
3.2n � 2

9.2n�2 � 2
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The speed

Definition

S(M) = max
c2C

s(c) = max
c2C

s(c) = lim
n

sup
c

sn(c)
n

= inf
n

sup
c

sn(c)
n

All definitions are indeed equivalent. This is due to compactness of the
set of configurations and subadditivity.
Note that it is a maximum, not a supremum.
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A few notes about the speed

The maximal speed is “usually” not reached by random
configurations
Nevertheless, S(M) =

R
s dµ for some invariant measure µ.

s(c) =
R

s dµ for µ-random points if µ ergodic

(generalization of Birkhoff theorem to Kingman subadditive functions
obtained by combining V’yugin + Hochman (2009))
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Entropy

Here is an equivalent definition, from Oprocha(2006).

For c a configuration, let T (c) be the trace of the configuration, i.e. the
sequence (states, symbols) visited by the machine. Let T be the set of
all traces

Definition (Oprocha (2006))

H(M) = H(T ) = lim
1
n

log |Tn|

where Tn are all possible words of length n of the trace

Note: The machine in the example has zero entropy (any word of Tn
has “few” symbols b)
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In this talk

Theorem
Entropy and speed are computable for one-tape Turing machines.
That is, there is an algorithm, that given every ✏, can compute an
approximation upto ✏.
Furthermore, the speed is always a rational number

Plan of the talk
Link between entropy and speed
Some technical lemmas
Graphs

E. Jeandel, Entropy and Speed of Turing machines 14/39



Comments

Surprising, usually every dynamical quantity is semi-computable
but not computable
The speed is not computable as a rational number.

Starting from M, we can effectively produce a TM M 0 for which
S(M 0) ⇠ 2�t where t is the number of steps before M halts on
empty input.

There is no algorithm to decide if the entropy is zero.
None of the techniques work with multi-tape TM. The entropy is
not computable anymore.
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Plan

1 Entropy vs Speed

2 Technical lemmas

3 Core of the proof
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Entropy = Complexity

The (average) complexity of a infinite word u is

K (u) = lim sup
K (u1...n)

n

(same with K (u))

Theorem (Brudno 1983, see also Simpson 2013)
For a subshift T ,

h(T ) = max
u2T

K (u) = max
u2T

K (u)

(More exactly, the maximum is reached µ-a.e, for µ ergodic of maximal
entropy)

Note: equivalence between the two max also follows by subadditivity:
K (u1 . . . un+m)  K (u1 . . . un) + K (un+1 . . . un+m) + O(1)
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Consequences

H(M) = max
c2C

K (T (c))

(Similar to the formula for the speed)
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Consequences

T (c)1...n can be computed if we know the sn(c) symbols read, the
initial position of the head, and the initial state.

K (T (c)1...n) = K (c|Sn(c)) + O(log sn(c)) + O(log n)

K (T (c)1...n)  sn(c)| log⌃|+ O(log n)

H(M)  S(M) log |⌃|

S(M) � H(M)

log |⌃|
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(Topological) Pressure

Let MA be the same as the machine M, but over the alphabet ⌃⇥ A,
that ignores the alphabet A.

S(M) = lim
|A|!1

H(MA)

log |⌃⇥ A|

The speed is the entropy for a very large alphabet relative to its size.

If we denote Ps(x) = H(MA) for x = log |A|, Ps(x) is called the
topological pressure of (sn)n2N.
This result has been proven in this context in Feng-Hang,2010.
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Consequences

Proofs for entropy and speed are relatively the same.
We will deal with speed in the talk.
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Plan

1 Entropy vs Speed

2 Technical lemmas

3 Core of the proof
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The goal

S(M) = max
c2C

s(c) = inf
n

sup
c

sn(c)
n

S(M) is computable from above due to the last definition. We need to
prove it is computable from below.

What is the behaviour of a configuration of maximal speed ?
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Lemma 1

Starting from c (of maximal speed) M will visit each cell finitely many
times.

If the TM zigzags on input c, then it is losing time.
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Corollary

The maximal speed is obtained for a configuration that never goes
back to the cell at 0.

The maximal speed is obtained (wlog) for a configuration that visits
only cells with nonnegative coordinates.
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Lemma 2

Let fn(c) be the first time we visit cell n, and ln(c) the last time we visit
cell n:

S(M) = max
c

lim
n

fn(c)
= max

c
lim

n
ln(c)

1/S(M) is somehow the “average running time”.
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Plan

1 Entropy vs Speed

2 Technical lemmas

3 Core of the proof
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The proof
Let c be of maximal speed

a b c b a c c

b b c b a c

a cb

b

b

b

b a c

ba b a c

b b b a c

a bb a c

q2

q1

q1

q2

q1

q1

Both vertices labeled q1 represent the same vertex.
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The proof
Let c be of maximal speed

q2

q1

q1q2q1

q1

q1

a

b

c

b

Both vertices labeled q1 represent the same vertex.
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Graph

Transform the execution into a graph
Vertices are all possible (finite) sequence of states
There is an edge from w to w 0 labeled by a if it seems possible to
see w followed by w 0 around a cell labeled by a

This accurately represents the behaviour of the TM, as the only
transfer of information between cells ]�1,m] and cells [m,+1[
occurs at cell m.
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Formal definition

We define L and R inductively

(✏, ✏, a) 2 L

If by reading a from state q, we write b, go right in state q0

(qw , q0w 0, a) 2 L () (w ,w 0, b) 2 R

If by reading a from state q, we write b, go left in state q0

(qq0w ,w 0, a) 2 L () (w ,w 0, b) 2 L

(Similar definition for R).
This graph is computable (for all reasonable definitions of computable)
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Key Lemma

To every configuration c corresponds a path in the graph

To every path (w1, x1,w2, x2,w3, x3 . . . ) in this graph corresponds a
configuration c. For this configuration, Cn(c) is a prefix of wn.
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Speed on the graph

Let |w | (the length of w) be the weight of vertex w .
To each path (w1, x1,w2, x2,w3, x3 . . . ) we can define its average
speed:

S(p) = lim sup
n

nP
i<n |wi |

and its average complexity

K (p) = lim sup
n

K (x1 . . . xn)P
i<n |wi |
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Reformulation

S(M) = max
p

S(p)

H(M) = max
p

K (p)

The maximum is over paths that start from a vertex of weight 1.
Preuve: For any configuration c,
fn(c)  |C1(c)|+ |C2(c)|+ |Cn�1(c)|  ln(c).
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Key Theorem

Let Gk be the subgraph of vertices with weight at most k

S(M) = sup
k

max
p⇢Gk

S(p)

H(M) = sup
k

max
p⇢Gk

K (p)
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Fake proof (1/2)

Suppose the speed/entropy is ↵ 6= 0.
Take a path p that uses possibly vertices of weight > k .
There should be few vertices of big weight (a proportion at most
1/(↵k))
Uses alternate paths of length  �(k) to bypass these vertices.
Let p0 be the new path

The new path is obtained from the previous one by deleting at most a
proportion 1/↵k of vertices, and adding at most a proportion �(k)/↵k
of vertices.
(If done correctly, we can take �(k) = o(k))
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Fake proof (2/2)

We must show the Kolmogorov complexity does not decrease too
much.
The average Kolmogorov complexity of p relative to p0 is

E(�(k)/↵k) + E(1/↵k) + log⌃/↵k

where E(q) = �q log q � (1 � q) log(1 � q).

Specify the vertices that disappear
Specify where to insert
Specify what to insert

This converges to 0 when k goes to infinity.
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Speed

S(M) is computable

For a finite graph, the maximal speed is obtained by the cycle of
minimal weight.
As weights are integers, this implies that the maximal speed is
obtained in the infinite graph by the cycle of minimal weight.

Corollaire
S(M) is a rational number. It is achieved by a periodic configuration.
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Entropy

How to compute maxp⇢G K (p) for a finite graph G ?

Not clear in the general case. In our case, the graph has no diamond.
For a path (w1, x1,w2, x2 . . . )

K (w1x1w2x2 . . .wnxn) = K (x1 . . . xn) + O(1)

This implies we can unfold the graph, to have only vertices of weight 1.
If all vertices have the same weight, then the maximum complexity is
the same as the entropy of the graph (SFT) by Entropy=Complexity.

The entropy is computable
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Open problems

Characterize entropies of one-tape Turing machines.

The numbers are computable, and it cannot be all computable
numbers.

Find how to compute the average speed.

Find a Turing machine with two tapes for which the entropy (resp.
speed) is not a computable number.
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