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Boolean Threshold Functions

Boolean function f : {a, b}n → {−1, 1}.

Polynomial threshold gate computing f is a polynomial
p ∈ R[x1, . . . , xn] such that for all x ∈ {a, b}n we have

f (x) = sign p(x).

Complexity measures:

The degree of p is the degree of the polynomial.

The length of p is the number of its monomials.
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Example

{a, b} = {1, 2}.

p(x , y) = 16− 15xy + 3x2y2.

x = y = 1 16− 15 + 3 > 0

x = 2, y = 1 16− 30 + 12 < 0

x = y = 2 16− 60 + 48 > 0

p(x , y) computes PARITY function:
p(x , y) > 0 iff x + y is odd.
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The domain

The most studied cases are {a, b} = {0, 1} and {a, b} = {−1, 1}.

In these cases we can assume that deg p ≤ n.
Indeed, x2 = x , if x ∈ {0, 1} and
x2 = 1, if x ∈ {−1, 1}.

For general {a, b} this is not the case, in principle degree greater
than n can help to reduce the length.
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Degree vs. length

Indeed, large degree can help.

Theorem (Basu et. al, 2004)

PARITY over {1, 2} requires length 2n when the degree is bounded
by n, but is computable by degree n2 and length n + 1 threshold
gate.

Our example:
p(x , y) = 16− 15xy + 3x2y2

n = 2, length is n + 1 = 3 degree is n2 = 4.
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The PTF complexity class

Given l(n) and d(n), we denote by

PTFa,b(l(n), d(n))

the class of Boolean functions over {a, b}n computable by
polynomial threshold functions of length l(n) and degree d(n).

PTFa,b(l(n),∞) — no bound on the degree.

PTFa,b(d(n)) = PTFa,b(poly(n), d(n)).

Below we concentrate on {1, 2}-domain. Our results also hold for
all {a, b}-domains, which are essentially different from {0, 1} and
{−1, 1}.
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Circuit Classes Notation

We consider classes AND, OR, XOR, AC0.

THR: f (x) = sign(
∑

i wixi + w0).

MAJ: f (x) = sign(
∑

i wixi + w0), where all wi are integers
bounded by polynomial in n.

Let C1 and C2 be two classes of Boolean circuits.
By C1 ◦ C2 we denote the class of polynomial size circuits
consisting of circuit from C1 with circuits from C2 as inputs.
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Exponential form of PTFs

For a variable y ∈ {1, 2} consider x = log2 y ∈ {0, 1}.
Then y = 2x .

For monomials we have

ya1
1 . . . yann = 2a1x1+...+anxn

and for polynomials

P(y) =
l∑

j=1

cj

n∏
i=1

y
aij
i =

l∑
j=1

cj2
∑n

i=1 aijxi =
l∑

j=1

2
∑n

i=1 aijxi+log2 cj
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Initial results

Lemma
PTF1,2(2,∞) = THR and PTF1,2(2, poly(n)) = MAJ.

Proof.
Consider THR gate:

∑n
i=1 wixi − w0 ≥ 0.

Raise each side to the power of 2.

In the other direction, consider

c12
∑n

i=1 aixi + c22
∑n

i=1 bixi ≥ 0.

Interesting case: sign c1 6= sign c2.
Move one summand to the other side and take a logarithm.
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Bounded degree PTFs

Theorem

PTF1,2(poly(n)) = THR ◦MAJ

Note that
PTF0,1(poly(n)) = THR ◦AND

and
PTF−1,1(poly(n)) = THR ◦XOR.

Thus, threshold gates over {1, 2} are strictly stronger.
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Depth 2 Threshold Circuits

MAJ ◦MAJ

THR ◦ THR

THR ◦MAJ

Goldman et al., 92

?

Theorem (Goldman, Håstad, Razborov, 92)

MAJ ◦ THR = MAJ ◦MAJ.
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Bounded degree PTFs

Theorem (restated)

PTF1,2(poly(n)) = THR ◦MAJ

Main observation: linear form in each MAJ gate can obtain only
polynomially many values.

We can precisely compute each MAJ gate by polynomial length
{1, 2}-polynomial.
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Byproduct

Lemma
Any polynomial size circuit in THR ◦MAJ is equivalent to a
polynomial size circuit of the same form such that all majority
gates on the bottom level are monotone.

The same is true for MAJ ◦MAJ.
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Lower bounds

Let x , y ∈ {0, 1}n.
Inner product function:

IP(x , y) =
⊕
i

xi ∧ yi .

Theorem (restated)

PTF1,2(poly(n)) = THR ◦MAJ

Corollary

IP /∈ PTF1,2(poly(n)), AND ◦OR ◦AND2 /∈ PTF1,2(poly(n)).

What about PTF1,2(∞)?
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Sign rank

Let A = (aij) be a real matrix with nonzero elements.
Sign rank of A is the minimal rank of the real matrix B = (bij)
such that sign bij = sign aij for all i , j .

For the Boolean function f (x , y) consider the matrix
Mf = (f (x , y))x ,y of size 2n × 2n. The sign rank of f (x , y) is the
sign rank of Mf .

Theorem (Forster, 2002)

The sign rank of IP(x , y) is 2Ω(n).

Theorem (Razborov, Sherstov, 2010)

The sign rank of AND ◦OR ◦AND2 is 2Ω(n1/3).

From this: IP and AND ◦OR ◦AND2 require exponential size
THR ◦MAJ circuits.
Why: MAJ gates compute low rank matrices. Rank is subadditive.
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Lower bounds for PTF1,2(∞)

Lemma
Assume f : {0, 1}n × {0, 1}n → {−1, 1} is computed by a PTF of
length s on the domain {1, 2}n × {1, 2}n. Then the matrix Mf has
sign rank at most s.

Proof.
Consider one monomial

∏
i

xaii ybii =

(∏
i

xaii

)
·

(∏
i

ybii

)
.

It defines rank 1 matrix.

Corollary

Any PTF on the domain {1, 2}n × {1, 2}n computing IP2 requires
length 2Ω(n). Any PTF on the domain {1, 2}n × {1, 2}n computing

AND ◦OR ◦AND2 requires length 2Ω(n1/3).
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Bounded Weight vs. Unbounded Weight

Is it true that PTF1,2(poly(n)) = PTF1,2(∞)?

Open problem!

Theorem
If THR ◦ THR * THR ◦MAJ ◦ AND2 then
PTF1,2(∞) * PTF1,2(poly(n)).

To prove this we need the following lemma.

Lemma
THR ◦ THR ⊆ PTF1,2(∞) ◦ AND2.
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Proof of the lemma

Lemma (restated)

THR ◦ THR ⊆ PTF1,2(∞) ◦ AND2.

Proof of the lemma.
Definition. ETHR: f (x) = 1 iff

∑
i wixi + w0 = 0.

It is known that THR ◦ THR = THR ◦ ETHR (Hansen, P., 2010).

Note that ETHR-gate defined by L(x) = 0 can be approximated
by 2−c·L(x)2

, where c is positive constant.

Thus we can rewrite THR ◦ ETHR in the form

sign

(∑
i

2−c·Li (x)2

)
,

where Li (x) are linear forms.
Opening the brackets in the exponent we get the circuit of the
form PTF1,2(∞) ◦ AND2.
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Bounded Weight vs. Unbounded Weight

Theorem (restated)

If THR ◦ THR * THR ◦MAJ ◦ AND2 then
PTF1,2(∞) * PTF1,2(poly(n)).

Proof.
Assume PTF1,2(poly(n)) = PTF1,2(∞). Then

THR ◦ THR ⊆ PTF1,2(∞) ◦ AND2 =

PTF1,2(poly(n)) ◦ AND2 = THR ◦MAJ ◦ AND2,

Note that THR ◦ THR ⊆ THR ◦MAJ ◦ AND2 implies
THR ◦ THR ◦ AND = THR ◦MAJ ◦ AND.
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Relations to Communication Complexity

f : {0, 1}n × {0, 1}n → {0, 1}.
There are players Alice and Bob.
Alice gets x , Bob gets y .
They have to compute f (x , y).
Communication complexity of f is the worst case bit size of their
communication.

Unbounded error randomized communication complexity:
Each of Alice and Bob has an access to the source of random bits
(separately). They have to output f (x , y) correctly with probability
> 1/2. For this version of complexity we use the notation UCC (f ).

Theorem (Paturi, Simon, 1986)

For any f UCC (f ) is equal to the logarithm of the sign rank of f
up to an additive constant.

20 / 27



Three players, Number on the Forehead

Suppose now there are 3 players A, B and C and f depends on
variables x , y , z ∈ {0, 1}n.

A has access to y , z , B has access to x , z , C has access to y , z .
We can consider unbounded error case in this setting too.

We denote it by UCC3(f ).
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Tensor rank

Let A = (aijk) be an order 3 tensor, i , j , k = 1, . . . , n.

A is a cylinder tensor if it does not depend on one of the
coordinates.

A is a cylinder product if it can be written as a Hadamard product
A1 � A2 � A3 where A1,A2, and A3 are cylinder tensors. That is,

aijk = a
(1)
jk a

(2)
ik a

(3)
ij .

The sign complexity of an order 3 tensor A = (aijk) is the
minimum r such that there exist cylinder product tensors

B1, . . . ,Br , with B` = (b
(`)
ijk ), such that

sign(aijk) = sign
(
b

(1)
ijk + · · ·+ b

(r)
ijk

)
, for all i , j , k .

Note that we have a nonstandard notion of rank!
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Tensor rank and Communication Complexity

Lemma
Consider f : {0, 1}n × {0, 1}n × {0, 1}n → {−1, 1} and let s be the
uniform sign complexity of the associated communication tensor
Tf . Then

UCC3(f ) = Θ(log2 s).
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Lemma (restated)

Assume f : {0, 1}n × {0, 1}n → {−1, 1} is computed by a PTF of
length s on the domain {1, 2}n × {1, 2}n. Then the matrix Mf has
sign rank at most s.

Thus, f above has communication complexity Ω(s).

Lemma
Assume that f : {0, 1}n × {0, 1}n × {0, 1}n → {−1, 1} is computed
by a PTF1,2(∞) ◦ AND2. Then the sign complexity of Tf is
polynomial in n.

The proof is analogous: 2p(x ,y ,z) = 2p1(x ,y)2p2(x ,z)2p3(y ,z).
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Lemma (restated)

THR ◦ THR ⊆ PTF1,2(∞) ◦ AND2.

Corollary

Assume that f : {0, 1}n × {0, 1}n × {0, 1}n → {−1, 1} has
unbounded error 3-player communication complexity c. Then every
THR ◦ THR computing f must contain 2c/poly(n) gates.

We do not know functions with large unbounded error 3-player
communication complexity.
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Relations between the domains

Our results works for all domains {a, b} such that a, b 6= 0 and
|a| 6= |b|.
But what is the relation of classes for different domains? Is it true
that

PTF1,2(∞) = PTF1,3(∞)?

Open problem!

But we know that PTF1,2(∞) = PTF1,−2(∞).

More generally,

Lemma
For all a, b ∈ R and for any natural number k we have
PTFa,b(∞) = PTFak ,bk (∞).

PTF1,2(∞) = PTF1,4(∞) = PTF1,−2(∞).
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Other results

We also consider max-plus version of PTFs:

I they are somewhere between AND ◦ THR and
AND ◦OR ◦ THR;

I we know lower bounds for them (through usual PTFs);

I the class is still strong (can compute various “complex”
functions).

Other partial results:

I Exponential degree implies doubly exponential weight and vice
versa;

I Exponential degree upper bound for length 3 PTFs;

I Exponential degree lower bound for constant length PTFs.
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