Polynomial threshold functions and Boolean threshold circuits

Kristoffer Arnsfelt Hansen ${ }^{1} \quad$ Vladimir V. Podolskii ${ }^{2}$

${ }^{1}$ Aarhus University
${ }^{2}$ Steklov Mathematical Institute

MFCS 2013

Boolean Threshold Functions

Boolean function $f:\{a, b\}^{n} \rightarrow\{-1,1\}$.
Polynomial threshold gate computing f is a polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ such that for all $x \in\{a, b\}^{n}$ we have

$$
f(x)=\operatorname{sign} p(x)
$$

Complexity measures:
The degree of p is the degree of the polynomial.
The length of p is the number of its monomials.

Example

$$
\begin{aligned}
& \{a, b\}=\{1,2\} \\
& p(x, y)=16-15 x y+3 x^{2} y^{2}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \{a, b\}=\{1,2\} . \\
& p(x, y)=16-15 x y+3 x^{2} y^{2} .
\end{aligned}
$$

$$
\begin{aligned}
& x=y=1 \\
& x=2, y=1 \\
& x=y=2
\end{aligned}
$$

$$
\begin{array}{r}
16-15+3>0 \\
16-30+12<0 \\
16-60+48>0
\end{array}
$$

Example

$$
\begin{aligned}
& \{a, b\}=\{1,2\} \\
& p(x, y)=16-15 x y+3 x^{2} y^{2} . \\
& \\
& \quad x=y=1 \\
& x=2, y=1 \\
& x=y=2
\end{aligned} r \begin{aligned}
& \\
& \quad 16-15+3>0 \\
&
\end{aligned}
$$

$p(x, y)$ computes PARITY function: $p(x, y)>0$ iff $x+y$ is odd.

The domain

The most studied cases are $\{a, b\}=\{0,1\}$ and $\{a, b\}=\{-1,1\}$.
In these cases we can assume that $\operatorname{deg} p \leq n$.
Indeed, $x^{2}=x$, if $x \in\{0,1\}$ and
$x^{2}=1$, if $x \in\{-1,1\}$.

The domain

The most studied cases are $\{a, b\}=\{0,1\}$ and $\{a, b\}=\{-1,1\}$. In these cases we can assume that $\operatorname{deg} p \leq n$.
Indeed, $x^{2}=x$, if $x \in\{0,1\}$ and $x^{2}=1$, if $x \in\{-1,1\}$.

For general $\{a, b\}$ this is not the case, in principle degree greater than n can help to reduce the length.

Degree vs. length

Indeed, large degree can help.
Theorem (Basu et. al, 2004)
PARITY over $\{1,2\}$ requires length 2^{n} when the degree is bounded by n, but is computable by degree n^{2} and length $n+1$ threshold gate.

Our example:

$$
p(x, y)=16-15 x y+3 x^{2} y^{2}
$$

$n=2$, length is $n+1=3$ degree is $n^{2}=4$.

The PTF complexity class

Given $I(n)$ and $d(n)$, we denote by

$$
\operatorname{PTF}_{a, b}(I(n), d(n))
$$

the class of Boolean functions over $\{a, b\}^{n}$ computable by polynomial threshold functions of length $I(n)$ and degree $d(n)$.
$\operatorname{PTF}_{a, b}(I(n), \infty)$ - no bound on the degree.
$\operatorname{PTF}_{a, b}(d(n))=\operatorname{PTF}_{a, b}(\operatorname{poly}(n), d(n))$.

The PTF complexity class

Given $I(n)$ and $d(n)$, we denote by

$$
\operatorname{PTF}_{a, b}(I(n), d(n))
$$

the class of Boolean functions over $\{a, b\}^{n}$ computable by polynomial threshold functions of length $I(n)$ and degree $d(n)$.
$\operatorname{PTF}_{a, b}(I(n), \infty)$ - no bound on the degree.
$\operatorname{PTF}_{a, b}(d(n))=\operatorname{PTF}_{a, b}(\operatorname{poly}(n), d(n))$.
Below we concentrate on $\{1,2\}$-domain. Our results also hold for all $\{a, b\}$-domains, which are essentially different from $\{0,1\}$ and $\{-1,1\}$.

Circuit Classes Notation

We consider classes AND, OR, XOR, AC^{0}.
THR: $f(x)=\operatorname{sign}\left(\sum_{i} w_{i} x_{i}+w_{0}\right)$.
MAJ: $f(x)=\operatorname{sign}\left(\sum_{i} w_{i} x_{i}+w_{0}\right)$, where all w_{i} are integers bounded by polynomial in n.

Let \mathcal{C}_{1} and \mathcal{C}_{2} be two classes of Boolean circuits. By $\mathcal{C}_{1} \circ \mathcal{C}_{2}$ we denote the class of polynomial size circuits consisting of circuit from \mathcal{C}_{1} with circuits from \mathcal{C}_{2} as inputs.

Exponential form of PTFs

For a variable $y \in\{1,2\}$ consider $x=\log _{2} y \in\{0,1\}$.
Then $y=2^{x}$.
For monomials we have

$$
y_{1}^{a_{1}} \ldots y_{n}^{a_{n}}=2^{a_{1} x_{1}+\ldots+a_{n} x_{n}}
$$

and for polynomials

$$
P(y)=\sum_{j=1}^{\prime} c_{j} \prod_{i=1}^{n} y_{i}^{a_{i j}}=\sum_{j=1}^{l} c_{j} 2^{\sum_{i=1}^{n} a_{i j} x_{i}}=\sum_{j=1}^{l} 2^{\sum_{i=1}^{n} a_{i j} x_{i}+\log _{2} c_{j}}
$$

Initial results

Lemma
$\operatorname{PTF}_{1,2}(2, \infty)=\operatorname{THR}$ and $\operatorname{PTF}_{1,2}(2$, poly $(n))=$ MAJ.

Initial results

Lemma
$\operatorname{PTF}_{1,2}(2, \infty)=$ THR and $\operatorname{PTF}_{1,2}(2$, poly $(n))=$ MAJ.
Proof.
Consider THR gate: $\sum_{i=1}^{n} w_{i} x_{i}-w_{0} \geq 0$.
Raise each side to the power of 2 .
In the other direction, consider

$$
c_{1} 2^{\sum_{i=1}^{n} a_{i} x_{i}}+c_{2} 2^{\sum_{i=1}^{n} b_{i} x_{i}} \geq 0
$$

Interesting case: $\operatorname{sign} c_{1} \neq \operatorname{sign} c_{2}$.
Move one summand to the other side and take a logarithm.

Bounded degree PTFs

Theorem
$\operatorname{PTF}_{1,2}(p o l y(n))=\mathrm{THR} \circ \mathrm{MAJ}$

Bounded degree PTFs

Theorem

$$
\operatorname{PTF}_{1,2}(p o l y(n))=\mathrm{THR} \circ \mathrm{MAJ}
$$

Note that

$$
\operatorname{PTF}_{0,1}(\operatorname{poly}(n))=\mathrm{THR} \circ \mathrm{AND}
$$

and

$$
\operatorname{PTF}_{-1,1}(\operatorname{poly}(n))=\text { THR } \circ \mathrm{XOR} .
$$

Thus, threshold gates over $\{1,2\}$ are strictly stronger.

Depth 2 Threshold Circuits

THR o THR
 ?

THR ○ MAJ
Goldman et al., 92
MAJ ○ MAJ

Theorem (Goldman, Håstad, Razborov, 92)
$M A J \circ T H R=M A J \circ M A J$.

Bounded degree PTFs

Theorem (restated)

$$
\operatorname{PTF}_{1,2}(p o l y(n))=\mathrm{THR} \circ \mathrm{MAJ}
$$

Main observation: linear form in each MAJ gate can obtain only polynomially many values.

We can precisely compute each MAJ gate by polynomial length \{1,2\}-polynomial.

Byproduct

Lemma

Any polynomial size circuit in THR $\circ \mathrm{MAJ}$ is equivalent to a polynomial size circuit of the same form such that all majority gates on the bottom level are monotone.
The same is true for MAJ \circ MAJ.

Lower bounds

Let $x, y \in\{0,1\}^{n}$.
Inner product function:

$$
I P(x, y)=\bigoplus x_{i} \wedge y_{i}
$$

Lower bounds

Let $x, y \in\{0,1\}^{n}$.
Inner product function:

$$
I P(x, y)=\bigoplus_{i} x_{i} \wedge y_{i}
$$

Theorem (restated)

$$
\operatorname{PTF}_{1,2}(p o l y(n))=\mathrm{THR} \circ \mathrm{MAJ}
$$

Corollary
$\mathrm{IP} \notin \operatorname{PTF}_{1,2}(\operatorname{poly}(n)), \mathrm{AND} \circ \mathrm{OR} \circ \mathrm{AND}_{2} \notin \mathrm{PTF}_{1,2}(\operatorname{poly}(n))$.

Lower bounds

Let $x, y \in\{0,1\}^{n}$.
Inner product function:

$$
I P(x, y)=\bigoplus_{i} x_{i} \wedge y_{i}
$$

Theorem (restated)

$$
\operatorname{PTF}_{1,2}(p o l y(n))=\mathrm{THR} \circ \mathrm{MAJ}
$$

Corollary
$\mathrm{IP} \notin \operatorname{PTF}_{1,2}(\operatorname{poly}(n)), \mathrm{AND} \circ \mathrm{OR} \circ \mathrm{AND}_{2} \notin \mathrm{PTF}_{1,2}(\operatorname{poly}(n))$.
What about PTF $_{1,2}(\infty)$?

Sign rank

Let $A=\left(a_{i j}\right)$ be a real matrix with nonzero elements.
Sign rank of A is the minimal rank of the real matrix $B=\left(b_{i j}\right)$ such that $\operatorname{sign} b_{i j}=\operatorname{sign} a_{i j}$ for all i, j.
For the Boolean function $f(x, y)$ consider the matrix $M_{f}=(f(x, y))_{x, y}$ of size $2^{n} \times 2^{n}$. The sign rank of $f(x, y)$ is the sign rank of M_{f}.
Theorem (Forster, 2002)
The sign rank of $\operatorname{IP}(x, y)$ is $2^{\Omega(n)}$.
Theorem (Razborov, Sherstov, 2010)
The sign rank of AND $\circ \mathrm{OR} \circ \mathrm{AND}_{2}$ is $2^{\Omega\left(n^{1 / 3}\right)}$.
From this: IP and $\mathrm{AND} \circ \mathrm{OR} \circ \mathrm{AND}_{2}$ require exponential size THR ○ MAJ circuits.
Why: MAJ gates compute low rank matrices. Rank is subadditive.

Lower bounds for $\mathrm{PTF}_{1,2}(\infty)$

Lemma

Assume $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{-1,1\}$ is computed by a PTF of length s on the domain $\{1,2\}^{n} \times\{1,2\}^{n}$. Then the matrix M_{f} has sign rank at most s.

Proof.
Consider one monomial

$$
\prod_{i} x_{i}^{a_{i}} y_{i}^{b_{i}}=\left(\prod_{i} x_{i}^{a_{i}}\right) \cdot\left(\prod_{i} y_{i}^{b_{i}}\right) .
$$

It defines rank 1 matrix.

Lower bounds for $\mathrm{PTF}_{1,2}(\infty)$

Lemma

Assume $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{-1,1\}$ is computed by a PTF of length s on the domain $\{1,2\}^{n} \times\{1,2\}^{n}$. Then the matrix M_{f} has sign rank at most s.

Proof.
Consider one monomial

$$
\prod_{i} x_{i}^{a_{i}} y_{i}^{b_{i}}=\left(\prod_{i} x_{i}^{a_{i}}\right) \cdot\left(\prod_{i} y_{i}^{b_{i}}\right) .
$$

It defines rank 1 matrix.
Corollary
Any PTF on the domain $\{1,2\}^{n} \times\{1,2\}^{n}$ computing $I P_{2}$ requires length $2^{\Omega(n)}$. Any PTF on the domain $\{1,2\}^{n} \times\{1,2\}^{n}$ computing $\mathrm{AND} \circ \mathrm{OR} \circ \mathrm{AND}_{2}$ requires length $2^{\Omega\left(n^{1 / 3}\right)}$.

Bounded Weight vs. Unbounded Weight

Is it true that $\operatorname{PTF}_{1,2}(\operatorname{poly}(n))=\operatorname{PTF}_{1,2}(\infty)$?

Bounded Weight vs. Unbounded Weight

Is it true that $\operatorname{PTF}_{1,2}(\operatorname{poly}(n))=\operatorname{PTF}_{1,2}(\infty)$?
Open problem!

Bounded Weight vs. Unbounded Weight

Is it true that $\operatorname{PTF}_{1,2}(\operatorname{poly}(n))=\operatorname{PTF}_{1,2}(\infty)$?
Open problem!
Theorem
If $\mathrm{THR} \circ \mathrm{THR} \nsubseteq \mathrm{THR} \circ \mathrm{MAJ} \circ \mathrm{AND}_{2}$ then
$\operatorname{PTF}_{1,2}(\infty) \nsubseteq \mathrm{PTF}_{1,2}(\operatorname{poly}(n))$.

Bounded Weight vs. Unbounded Weight

Is it true that $\operatorname{PTF}_{1,2}(\operatorname{poly}(n))=\operatorname{PTF}_{1,2}(\infty)$?
Open problem!
Theorem
If $\mathrm{THR} \circ \mathrm{THR} \nsubseteq \mathrm{THR} \circ \mathrm{MAJ} \circ \mathrm{AND}_{2}$ then
$\mathrm{PTF}_{1,2}(\infty) \nsubseteq \mathrm{PTF}_{1,2}($ poly $(n))$.
To prove this we need the following lemma.
Lemma
$\mathrm{THR} \circ \mathrm{THR} \subseteq \mathrm{PTF}_{1,2}(\infty) \circ \mathrm{AND}_{2}$.

Proof of the lemma

Lemma (restated)
$\mathrm{THR} \circ \mathrm{THR} \subseteq \mathrm{PTF}_{1,2}(\infty) \circ \mathrm{AND}_{2}$.

Proof of the lemma

Lemma (restated)
$\mathrm{THR} \circ \mathrm{THR} \subseteq \mathrm{PTF}_{1,2}(\infty) \circ \mathrm{AND}_{2}$.
Proof of the lemma.
Definition. ETHR: $f(x)=1$ iff $\sum_{i} w_{i} x_{i}+w_{0}=0$.
It is known that THR \circ THR $=$ THR \circ ETHR (Hansen, P., 2010).

Proof of the lemma

Lemma (restated)
$\mathrm{THR} \circ \mathrm{THR} \subseteq \mathrm{PTF}_{1,2}(\infty) \circ \mathrm{AND}_{2}$.
Proof of the lemma.
Definition. ETHR: $f(x)=1$ iff $\sum_{i} w_{i} x_{i}+w_{0}=0$.
It is known that THR \circ THR $=$ THR \circ ETHR (Hansen, P., 2010).
Note that ETHR-gate defined by $L(x)=0$ can be approximated by $2^{-c \cdot L(x)^{2}}$, where c is positive constant.

Thus we can rewrite THR \circ ETHR in the form

$$
\operatorname{sign}\left(\sum_{i} 2^{-c \cdot L_{i}(x)^{2}}\right)
$$

where $L_{i}(x)$ are linear forms.
Opening the brackets in the exponent we get the circuit of the form $\mathrm{PTF}_{1,2}(\infty) \circ \mathrm{AND}_{2}$.

Bounded Weight vs. Unbounded Weight

Theorem (restated)
If $\mathrm{THR} \circ \mathrm{THR} \nsubseteq \mathrm{THR} \circ \mathrm{MAJ} \circ \mathrm{AND}_{2}$ then
$\operatorname{PTF}_{1,2}(\infty) \nsubseteq \mathrm{PTF}_{1,2}($ poly $(n))$.
Proof.
Assume $\operatorname{PTF}_{1,2}(\operatorname{poly}(n))=\operatorname{PTF}_{1,2}(\infty)$. Then

$$
\begin{gathered}
\mathrm{THR} \circ \mathrm{THR} \subseteq \mathrm{PTF}_{1,2}(\infty) \circ \mathrm{AND}{ }_{2}= \\
\mathrm{PTF}_{1,2}(\operatorname{poly}(n)) \circ \mathrm{AND}_{2}=\mathrm{THR} \circ \mathrm{MAJ} \circ \mathrm{AND}_{2},
\end{gathered}
$$

Note that $\mathrm{THR} \circ \mathrm{THR} \subseteq \mathrm{THR} \circ \mathrm{MAJ} \circ \mathrm{AND}_{2}$ implies $T H R \circ T H R \circ A N D=T H R \circ M A J \circ A N D$.

Relations to Communication Complexity

$f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$.
There are players Alice and Bob.
Alice gets x, Bob gets y.
They have to compute $f(x, y)$.
Communication complexity of f is the worst case bit size of their communication.

Unbounded error randomized communication complexity:
Each of Alice and Bob has an access to the source of random bits (separately). They have to output $f(x, y)$ correctly with probability $>1 / 2$. For this version of complexity we use the notation $\operatorname{UCC}(f)$.
Theorem (Paturi, Simon, 1986)
For any $f \operatorname{UCC}(f)$ is equal to the logarithm of the sign rank of f up to an additive constant.

Three players, Number on the Forehead

Suppose now there are 3 players A, B and C and f depends on variables $x, y, z \in\{0,1\}^{n}$.

A has access to y, z, B has access to x, z, C has access to y, z. We can consider unbounded error case in this setting too.

We denote it by $U C C_{3}(f)$.

Tensor rank

Let $A=\left(a_{i j k}\right)$ be an order 3 tensor, $i, j, k=1, \ldots, n$.
A is a cylinder tensor if it does not depend on one of the coordinates.
A is a cylinder product if it can be written as a Hadamard product $A_{1} \odot A_{2} \odot A_{3}$ where A_{1}, A_{2}, and A_{3} are cylinder tensors. That is, $a_{i j k}=a_{j k}^{(1)} a_{i k}^{(2)} a_{i j}^{(3)}$.
The sign complexity of an order 3 tensor $A=\left(a_{i j k}\right)$ is the minimum r such that there exist cylinder product tensors B_{1}, \ldots, B_{r}, with $B_{\ell}=\left(b_{i j k}^{(\ell)}\right)$, such that $\operatorname{sign}\left(a_{i j k}\right)=\operatorname{sign}\left(b_{i j k}^{(1)}+\cdots+b_{i j k}^{(r)}\right)$, for all i, j, k.
Note that we have a nonstandard notion of rank!

Tensor rank and Communication Complexity

Lemma
Consider $f:\{0,1\}^{n} \times\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{-1,1\}$ and let s be the uniform sign complexity of the associated communication tensor T_{f}. Then

$$
U C C_{3}(f)=\Theta\left(\log _{2} s\right)
$$

Lemma (restated)

Assume $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{-1,1\}$ is computed by a PTF of length s on the domain $\{1,2\}^{n} \times\{1,2\}^{n}$. Then the matrix M_{f} has sign rank at most s.

Thus, f above has communication complexity $\Omega(s)$.

Lemma (restated)

Assume $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{-1,1\}$ is computed by a PTF of length s on the domain $\{1,2\}^{n} \times\{1,2\}^{n}$. Then the matrix M_{f} has sign rank at most s.
Thus, f above has communication complexity $\Omega(s)$.
Lemma
Assume that $f:\{0,1\}^{n} \times\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{-1,1\}$ is computed by a $\mathrm{PTF}_{1,2}(\infty) \circ \mathrm{AND}_{2}$. Then the sign complexity of T_{f} is polynomial in n.
The proof is analogous: $2^{p(x, y, z)}=2^{p_{1}(x, y)} 2^{p_{2}(x, z)} 2^{p_{3}(y, z)}$.

Lemma (restated)

$\mathrm{THR} \circ \mathrm{THR} \subseteq \mathrm{PTF}_{1,2}(\infty) \circ \mathrm{AND}_{2}$.

Corollary

Assume that $f:\{0,1\}^{n} \times\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{-1,1\}$ has unbounded error 3-player communication complexity c. Then every THR \circ THR computing f must contain $2^{c} / p o l y(n)$ gates.

We do not know functions with large unbounded error 3-player communication complexity.

Relations between the domains

Our results works for all domains $\{a, b\}$ such that $a, b \neq 0$ and $|a| \neq|b|$.
But what is the relation of classes for different domains? Is it true that

$$
\operatorname{PTF}_{1,2}(\infty)=\operatorname{PTF}_{1,3}(\infty) ?
$$

Relations between the domains

Our results works for all domains $\{a, b\}$ such that $a, b \neq 0$ and $|a| \neq|b|$.
But what is the relation of classes for different domains? Is it true that

$$
\mathrm{PTF}_{1,2}(\infty)=\mathrm{PTF}_{1,3}(\infty) ?
$$

Open problem!

Relations between the domains

Our results works for all domains $\{a, b\}$ such that $a, b \neq 0$ and $|a| \neq|b|$.
But what is the relation of classes for different domains? Is it true that

$$
\operatorname{PTF}_{1,2}(\infty)=\operatorname{PTF}_{1,3}(\infty) ?
$$

Open problem!

But we know that $\operatorname{PTF}_{1,2}(\infty)=\operatorname{PTF}_{1,-2}(\infty)$.
More generally,
Lemma
For all $a, b \in \mathbb{R}$ and for any natural number k we have $\operatorname{PTF}_{a, b}(\infty)=\operatorname{PTF}_{a^{k}, b^{k}}(\infty)$.
$\mathrm{PTF}_{1,2}(\infty)=\mathrm{PTF}_{1,4}(\infty)=\mathrm{PTF}_{1,-2}(\infty)$.

Other results

We also consider max-plus version of PTFs:

- they are somewhere between AND \circ THR and AND \circ OR $\circ T H R$;
- we know lower bounds for them (through usual PTFs);
- the class is still strong (can compute various "complex" functions).
Other partial results:
- Exponential degree implies doubly exponential weight and vice versa;
- Exponential degree upper bound for length 3 PTFs;
- Exponential degree lower bound for constant length PTFs.

