Polynomial threshold functions and Boolean threshold circuits

Kristoffer Arnsfelt Hansen¹ Vladimir V. Podolskii²

¹Aarhus University

²Steklov Mathematical Institute

MFCS 2013

Boolean Threshold Functions

Boolean function $f: \{a, b\}^n \to \{-1, 1\}$.

Polynomial threshold gate computing f is a polynomial $p \in \mathbb{R}[x_1, \ldots, x_n]$ such that for all $x \in \{a, b\}^n$ we have

$$f(x) = \operatorname{sign} p(x).$$

Complexity measures:

The degree of p is the degree of the polynomial.

The length of p is the number of its monomials.

Example

$$\{a, b\} = \{1, 2\}.$$

 $p(x, y) = 16 - 15xy + 3x^2y^2.$

Example

$${a, b} = {1, 2}.$$

 $p(x, y) = 16 - 15xy + 3x^2y^2.$

$$x = y = 1$$
$$x = 2, y = 1$$
$$x = y = 2$$

 $\begin{array}{l} 16-15+3>0\\ 16-30+12<0\\ 16-60+48>0 \end{array}$

Example

$${a,b} = {1,2}.$$

 $p(x,y) = 16 - 15xy + 3x^2y^2.$

$$x = y = 1$$
 $16 - 15 + 3 > 0$ $x = 2, y = 1$ $16 - 30 + 12 < 0$ $x = y = 2$ $16 - 60 + 48 > 0$

p(x, y) computes PARITY function: p(x, y) > 0 iff x + y is odd.

The domain

The most studied cases are $\{a, b\} = \{0, 1\}$ and $\{a, b\} = \{-1, 1\}$.

In these cases we can assume that deg $p \le n$. Indeed, $x^2 = x$, if $x \in \{0, 1\}$ and $x^2 = 1$, if $x \in \{-1, 1\}$.

The domain

The most studied cases are $\{a, b\} = \{0, 1\}$ and $\{a, b\} = \{-1, 1\}$.

In these cases we can assume that deg $p \le n$. Indeed, $x^2 = x$, if $x \in \{0, 1\}$ and $x^2 = 1$, if $x \in \{-1, 1\}$.

For general $\{a, b\}$ this is not the case, in principle degree greater than *n* can help to reduce the length.

Indeed, large degree can help.

Theorem (Basu et. al, 2004)

PARITY over $\{1,2\}$ requires length 2^n when the degree is bounded by n, but is computable by degree n^2 and length n + 1 threshold gate.

Our example:

$$p(x,y) = 16 - 15xy + 3x^2y^2$$

n = 2, length is n + 1 = 3 degree is $n^2 = 4$.

The PTF complexity class

Given l(n) and d(n), we denote by

 $\mathsf{PTF}_{a,b}(l(n), d(n))$

the class of Boolean functions over $\{a, b\}^n$ computable by polynomial threshold functions of length l(n) and degree d(n).

 $\mathsf{PTF}_{a,b}(I(n),\infty)$ — no bound on the degree.

 $\mathsf{PTF}_{a,b}(d(n)) = \mathsf{PTF}_{a,b}(\mathsf{poly}(n), d(n)).$

The PTF complexity class

Given l(n) and d(n), we denote by

 $\mathsf{PTF}_{a,b}(l(n), d(n))$

the class of Boolean functions over $\{a, b\}^n$ computable by polynomial threshold functions of length l(n) and degree d(n).

 $\mathsf{PTF}_{a,b}(I(n),\infty)$ — no bound on the degree.

 $\mathsf{PTF}_{a,b}(d(n)) = \mathsf{PTF}_{a,b}(\mathsf{poly}(n), d(n)).$

Below we concentrate on $\{1,2\}$ -domain. Our results also hold for all $\{a, b\}$ -domains, which are essentially different from $\{0,1\}$ and $\{-1,1\}$.

Circuit Classes Notation

We consider classes AND, OR, XOR, AC⁰.

THR: $f(x) = \text{sign}(\sum_{i} w_i x_i + w_0)$. MAJ: $f(x) = \text{sign}(\sum_{i} w_i x_i + w_0)$, where all w_i are integers bounded by polynomial in n.

Let C_1 and C_2 be two classes of Boolean circuits. By $C_1 \circ C_2$ we denote the class of polynomial size circuits consisting of circuit from C_1 with circuits from C_2 as inputs.

Exponential form of PTFs

For a variable $y \in \{1, 2\}$ consider $x = \log_2 y \in \{0, 1\}$. Then $y = 2^x$.

For monomials we have

$$y_1^{a_1}\ldots y_n^{a_n}=2^{a_1x_1+\ldots+a_nx_n}$$

and for polynomials

$$P(y) = \sum_{j=1}^{l} c_j \prod_{i=1}^{n} y_i^{a_{ij}} = \sum_{j=1}^{l} c_j 2^{\sum_{i=1}^{n} a_{ij} x_i} = \sum_{j=1}^{l} 2^{\sum_{i=1}^{n} a_{ij} x_i + \log_2 c_j}$$

Initial results

Lemma $PTF_{1,2}(2,\infty) = THR \text{ and } PTF_{1,2}(2, poly(n)) = MAJ.$

Initial results

Lemma $PTF_{1,2}(2,\infty) = THR$ and $PTF_{1,2}(2, poly(n)) = MAJ$.

Proof.

Consider THR gate: $\sum_{i=1}^{n} w_i x_i - w_0 \ge 0$. Raise each side to the power of 2.

In the other direction, consider

$$c_1 2^{\sum_{i=1}^n a_i x_i} + c_2 2^{\sum_{i=1}^n b_i x_i} \ge 0.$$

Interesting case: sign $c_1 \neq$ sign c_2 . Move one summand to the other side and take a logarithm.

Bounded degree PTFs

Theorem

 $\mathsf{PTF}_{1,2}(\mathit{poly}(n)) = \mathsf{THR} \circ \mathsf{MAJ}$

Bounded degree PTFs

Theorem

$$\mathsf{PTF}_{1,2}(\mathit{poly}(n)) = \mathsf{THR} \circ \mathsf{MAJ}$$

Note that

$$\mathsf{PTF}_{0,1}(\mathsf{poly}(n)) = \mathrm{THR} \circ \mathrm{AND}$$

and

$$\mathsf{PTF}_{-1,1}(\mathsf{poly}(n)) = \mathrm{THR} \circ \mathrm{XOR}.$$

Thus, threshold gates over $\{1,2\}$ are strictly stronger.

Depth 2 Threshold Circuits

Theorem (Goldman, Håstad, Razborov, 92) MAJ \circ THR = MAJ \circ MAJ.

Bounded degree PTFs

Theorem (restated)

$$\mathsf{PTF}_{1,2}(\mathsf{poly}(n)) = \mathsf{THR} \circ \mathsf{MAJ}$$

Main observation: linear form in each $\rm MAJ$ gate can obtain only polynomially many values.

We can precisely compute each MAJ gate by polynomial length $\{1,2\}\mbox{-}polynomial.$

Byproduct

Lemma

Any polynomial size circuit in THR \circ MAJ is equivalent to a polynomial size circuit of the same form such that all majority gates on the bottom level are monotone.

The same is true for $MAJ \circ MAJ$.

Lower bounds

Let $x, y \in \{0, 1\}^n$. Inner product function:

$$IP(x,y) = \bigoplus_i x_i \wedge y_i.$$

Lower bounds

Let $x, y \in \{0, 1\}^n$. Inner product function:

$$IP(x,y) = \bigoplus_i x_i \wedge y_i.$$

Theorem (restated)

 $\mathsf{PTF}_{1,2}(\mathsf{poly}(n)) = \mathsf{THR} \circ \mathsf{MAJ}$

Corollary IP $\notin \mathsf{PTF}_{1,2}(\mathsf{poly}(n))$, AND \circ OR \circ AND₂ $\notin \mathsf{PTF}_{1,2}(\mathsf{poly}(n))$.

Lower bounds

Let $x, y \in \{0, 1\}^n$. Inner product function:

$$IP(x,y) = \bigoplus_i x_i \wedge y_i.$$

Theorem (restated)

 $\mathsf{PTF}_{1,2}(\mathsf{poly}(n)) = \mathsf{THR} \circ \mathsf{MAJ}$

Corollary

$$\begin{split} \mathrm{IP} \notin \mathsf{PTF}_{1,2}(\textit{poly}(n)), \ \mathrm{AND} \circ \mathrm{OR} \circ \mathrm{AND}_2 \notin \mathsf{PTF}_{1,2}(\textit{poly}(n)). \\ \end{split}$$
 What about $\mathsf{PTF}_{1,2}(\infty)$?

Sign rank

Let $A = (a_{ij})$ be a real matrix with nonzero elements. Sign rank of A is the minimal rank of the real matrix $B = (b_{ij})$ such that sign $b_{ij} = \text{sign } a_{ij}$ for all i, j.

For the Boolean function f(x, y) consider the matrix $M_f = (f(x, y))_{x,y}$ of size $2^n \times 2^n$. The sign rank of f(x, y) is the sign rank of M_f .

Theorem (Forster, 2002)

The sign rank of IP(x, y) is $2^{\Omega(n)}$.

Theorem (Razborov, Sherstov, 2010)

The sign rank of AND \circ OR \circ AND₂ is $2^{\Omega(n^{1/3})}$.

From this: IP and $AND \circ OR \circ AND_2$ require exponential size $THR \circ MAJ$ circuits.

Why: MAJ gates compute low rank matrices. Rank is subadditive.

Lower bounds for $\mathsf{PTF}_{1,2}(\infty)$

Lemma

Assume $f : \{0,1\}^n \times \{0,1\}^n \rightarrow \{-1,1\}$ is computed by a PTF of length s on the domain $\{1,2\}^n \times \{1,2\}^n$. Then the matrix M_f has sign rank at most s.

Proof.

Consider one monomial

$$\prod_{i} x_{i}^{a_{i}} y_{i}^{b_{i}} = \left(\prod_{i} x_{i}^{a_{i}}\right) \cdot \left(\prod_{i} y_{i}^{b_{i}}\right).$$

It defines rank 1 matrix.

Lower bounds for $\mathsf{PTF}_{1,2}(\infty)$

Lemma

Assume $f : \{0,1\}^n \times \{0,1\}^n \rightarrow \{-1,1\}$ is computed by a PTF of length s on the domain $\{1,2\}^n \times \{1,2\}^n$. Then the matrix M_f has sign rank at most s.

Proof.

Consider one monomial

$$\prod_{i} x_{i}^{\mathbf{a}_{i}} y_{i}^{\mathbf{b}_{i}} = \left(\prod_{i} x_{i}^{\mathbf{a}_{i}}\right) \cdot \left(\prod_{i} y_{i}^{\mathbf{b}_{i}}\right).$$

It defines rank 1 matrix.

Corollary

Any PTF on the domain $\{1,2\}^n \times \{1,2\}^n$ computing IP_2 requires length $2^{\Omega(n)}$. Any PTF on the domain $\{1,2\}^n \times \{1,2\}^n$ computing AND \circ OR \circ AND₂ requires length $2^{\Omega(n^{1/3})}$.

Is it true that $PTF_{1,2}(poly(n)) = PTF_{1,2}(\infty)$?

Is it true that $\mathsf{PTF}_{1,2}(\mathsf{poly}(n)) = \mathsf{PTF}_{1,2}(\infty)$?

Open problem!

Is it true that $\mathsf{PTF}_{1,2}(\mathsf{poly}(n)) = \mathsf{PTF}_{1,2}(\infty)$?

Open problem!

Theorem If THR \circ THR \nsubseteq THR \circ MAJ \circ AND₂ then PTF_{1,2}(∞) \nsubseteq PTF_{1,2}(poly(n)).

Is it true that $\mathsf{PTF}_{1,2}(\mathsf{poly}(n)) = \mathsf{PTF}_{1,2}(\infty)$?

Open problem!

Theorem If THR \circ THR \nsubseteq THR \circ MAJ \circ AND₂ then PTF_{1,2}(∞) \nsubseteq PTF_{1,2}(poly(n)).

To prove this we need the following lemma.

Lemma THR \circ THR \subseteq PTF_{1,2}(∞) \circ AND₂.

Proof of the lemma

Lemma (restated) THR \circ THR \subseteq PTF_{1,2}(∞) \circ AND₂.

Proof of the lemma

Lemma (restated) THR \circ THR \subseteq PTF_{1,2}(∞) \circ AND₂.

Proof of the lemma. Definition. ETHR: f(x) = 1 iff $\sum_{i} w_i x_i + w_0 = 0$.

It is known that $THR \circ THR = THR \circ ETHR$ (Hansen, P., 2010).

Proof of the lemma

Lemma (restated) THR \circ THR \subseteq PTF_{1.2}(∞) \circ AND₂.

Proof of the lemma.

Definition. ETHR: f(x) = 1 iff $\sum_{i} w_i x_i + w_0 = 0$.

It is known that $THR \circ THR = THR \circ ETHR$ (Hansen, P., 2010).

Note that ETHR-gate defined by L(x) = 0 can be approximated by $2^{-c \cdot L(x)^2}$, where *c* is positive constant.

Thus we can rewrite $\mathsf{THR}\circ\mathsf{ETHR}$ in the form

$$\operatorname{sign}\left(\sum_{i} 2^{-c \cdot L_i(x)^2}\right),$$

where $L_i(x)$ are linear forms.

Opening the brackets in the exponent we get the circuit of the form $\text{PTF}_{1,2}(\infty) \circ \text{AND}_2$.

```
Theorem (restated)

If THR \circ THR \nsubseteq THR \circ MAJ \circ AND<sub>2</sub> then

PTF<sub>1,2</sub>(\infty) \nsubseteq PTF<sub>1,2</sub>(poly(n)).
```

Proof.

Assume $PTF_{1,2}(poly(n)) = PTF_{1,2}(\infty)$. Then

 $\mathsf{THR} \circ \mathsf{THR} \subseteq \mathsf{PTF}_{1,2}(\infty) \circ \mathsf{AND}_2 =$

 $\mathsf{PTF}_{1,2}(\mathsf{poly}(n)) \circ \mathsf{AND}_2 = \mathsf{THR} \circ \mathsf{MAJ} \circ \mathsf{AND}_2,$

Note that THR \circ THR \subseteq THR \circ MAJ \circ AND₂ implies THR \circ THR \circ AND = THR \circ MAJ \circ AND.

Relations to Communication Complexity

$$\begin{split} f \colon \{0,1\}^n \times \{0,1\}^n \to \{0,1\}. \\ \text{There are players Alice and Bob.} \end{split}$$

Alice gets x, Bob gets y.

They have to compute f(x, y).

Communication complexity of f is the worst case bit size of their communication.

Unbounded error randomized communication complexity:

Each of Alice and Bob has an access to the source of random bits (separately). They have to output f(x, y) correctly with probability > 1/2. For this version of complexity we use the notation UCC(f).

Theorem (Paturi, Simon, 1986)

For any f UCC(f) is equal to the logarithm of the sign rank of f up to an additive constant.

Three players, Number on the Forehead

Suppose now there are 3 players A, B and C and f depends on variables $x, y, z \in \{0, 1\}^n$.

A has access to y, z, B has access to x, z, C has access to y, z. We can consider unbounded error case in this setting too.

We denote it by $UCC_3(f)$.

Tensor rank

Let $A = (a_{ijk})$ be an order 3 tensor, $i, j, k = 1, \ldots, n$.

A is a *cylinder tensor* if it does not depend on one of the coordinates.

A is a cylinder product if it can be written as a Hadamard product $A_1 \odot A_2 \odot A_3$ where A_1, A_2 , and A_3 are cylinder tensors. That is, $a_{ijk} = a_{jk}^{(1)} a_{ik}^{(2)} a_{ij}^{(3)}$.

The sign complexity of an order 3 tensor $A = (a_{ijk})$ is the minimum r such that there exist cylinder product tensors B_1, \ldots, B_r , with $B_\ell = (b_{ijk}^{(\ell)})$, such that $\operatorname{sign}(a_{ijk}) = \operatorname{sign}(b_{ijk}^{(1)} + \cdots + b_{ijk}^{(r)})$, for all i, j, k.

Note that we have a nonstandard notion of rank!

Tensor rank and Communication Complexity

Lemma

Consider $f : \{0,1\}^n \times \{0,1\}^n \times \{0,1\}^n \rightarrow \{-1,1\}$ and let s be the uniform sign complexity of the associated communication tensor T_f . Then

$$UCC_3(f) = \Theta(\log_2 s).$$

Lemma (restated)

Assume $f : \{0,1\}^n \times \{0,1\}^n \rightarrow \{-1,1\}$ is computed by a PTF of length s on the domain $\{1,2\}^n \times \{1,2\}^n$. Then the matrix M_f has sign rank at most s.

Thus, f above has communication complexity $\Omega(s)$.

Lemma (restated)

Assume $f : \{0,1\}^n \times \{0,1\}^n \rightarrow \{-1,1\}$ is computed by a PTF of length s on the domain $\{1,2\}^n \times \{1,2\}^n$. Then the matrix M_f has sign rank at most s.

Thus, f above has communication complexity $\Omega(s)$.

Lemma

Assume that $f : \{0,1\}^n \times \{0,1\}^n \times \{0,1\}^n \to \{-1,1\}$ is computed by a $\mathsf{PTF}_{1,2}(\infty) \circ \mathsf{AND}_2$. Then the sign complexity of T_f is polynomial in n.

The proof is analogous: $2^{p(x,y,z)} = 2^{p_1(x,y)}2^{p_2(x,z)}2^{p_3(y,z)}$.

Lemma (restated) THR \circ THR \subseteq PTF_{1,2}(∞) \circ AND₂.

Corollary

Assume that $f : \{0,1\}^n \times \{0,1\}^n \times \{0,1\}^n \to \{-1,1\}$ has unbounded error 3-player communication complexity c. Then every THR \circ THR computing f must contain $2^c/poly(n)$ gates.

We do not know functions with large unbounded error 3-player communication complexity.

Relations between the domains

Our results works for all domains $\{a, b\}$ such that $a, b \neq 0$ and $|a| \neq |b|$. But what is the relation of classes for different domains? Is it true that

 $\mathsf{PTF}_{1,2}(\infty) = \mathsf{PTF}_{1,3}(\infty)?$

Relations between the domains

Our results works for all domains $\{a, b\}$ such that $a, b \neq 0$ and $|a| \neq |b|$. But what is the relation of classes for different domains? Is it true that

$$\mathsf{PTF}_{1,2}(\infty) = \mathsf{PTF}_{1,3}(\infty)?$$

Open problem!

Relations between the domains

Our results works for all domains $\{a, b\}$ such that $a, b \neq 0$ and $|a| \neq |b|$. But what is the relation of classes for different domains? Is it true that

$$\mathsf{PTF}_{1,2}(\infty) = \mathsf{PTF}_{1,3}(\infty)?$$

Open problem!

But we know that $\mathsf{PTF}_{1,2}(\infty) = \mathsf{PTF}_{1,-2}(\infty)$.

More generally,

Lemma

For all $a, b \in \mathbb{R}$ and for any natural number k we have $\mathsf{PTF}_{a,b}(\infty) = \mathsf{PTF}_{a^k,b^k}(\infty)$.

 $\mathsf{PTF}_{1,2}(\infty) = \mathsf{PTF}_{1,4}(\infty) = \mathsf{PTF}_{1,-2}(\infty).$

Other results

We also consider max-plus version of PTFs:

- ► they are somewhere between AND ° THR and AND ° OR ° THR;
- we know lower bounds for them (through usual PTFs);
- the class is still strong (can compute various "complex" functions).

Other partial results:

- Exponential degree implies doubly exponential weight and vice versa;
- Exponential degree upper bound for length 3 PTFs;
- Exponential degree lower bound for constant length PTFs.