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Notation: Ω := {0, 1}∞ 3 x∞, y∞, and S := {0, 1}∗ 3 x, y.

PU : unifrom probability.

Theorem 1 (Lambalgen)

(x∞, y∞) is ML-random w.r.t. PU × PU

⇔ y∞ is ML-random w.r.t. PU

x∞ is ML-random w.r.t. PU relative to y∞.
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P : computable probability on X × Y,X = Y = Ω.
P (x, y) := P (∆(x) × ∆(y)), ∆(x) := {xω | ω ∈ Ω}.
PX(x) := P (x,Ω), PY (y) := (Ω, y): marginal distribution

Theorem 2 (Takahashi 2008)
P (x | y∞) := limy→y∞ P (x | y) exists for all x ∈ S and for all
ML-random y∞ w.r.t. PY .
P (· | y∞) is defined for all ML-random y∞ w.r.t. PY .
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Computability of conditional probability

n uniform computability

∃A∀y∞ ∈ RPY ∀x, k∃y @ y∞ |A(x, k, y)−P (x | y∞)| <
1
k
.

n computability for fixed y∞.

∃A∀x, k∃y @ y∞ |A(x, k, y) − P (x | y∞)| <
1
k
.



Vovk and V’yugin 93

Lambalgen’s
theorem
Conditional
probability

Computability of
conditional
probability

Vovk and V’yugin 93

Takahashi 2008,
2011

Blind randomness

Main theorem
Outline of main
theorem
Outline of main
theorem 2
Outline of main
theorem 3
Outline of main
theorem 4
Outline of main
theorem 5

Reference

5 / 14

Theorem 3 (Vovk and V’yugin) Let P be a computable
probability on X × Y,X = Y = Ω. Under the assumptions that
(i) conditional probabilities exist for all parameters and
(ii) they are uniformly computable for all parameters,

(x∞, y∞) ∈ Ω2 is ML-random w.r.t. P on X × Y
iff y∞ is ML-random w.r.t. PY and
x∞ is ML-random w.r.t. P (·|y∞) relative to y∞.

Theorem 4 (Roy 2011) There is a computable probability
whose conditional probability is not uniformly computable.
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Theorem 5 (Takahashi 08, 11) Let P be a computable
probability on X × Y,X = Y = Ω. Fix a ML-random y∞

w.r.t. PY . If the conditional probability P (·|y∞) is computable
relative to y∞ then,
(x∞, y∞) ∈ Ω2 is ML-random w.r.t. P on X × Y iff y∞ is
ML-random w.r.t. PY and x∞ is ML-random w.r.t. P (·|y∞)
relative to y∞.
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P : probability on Ω.

n blind test w.r.t. P : U r.e., Un := {x | (x, n) ∈ U},
∀n Un ⊇ Un+1, P (Ũn) < 2−n.

n x∞ is blind random w.r.t. P iff x∞ /∈ ∩nŨn for all blind
test U w.r.t. P [Hanssen 10, Bienvenu et.al 11].
If probability is not computable, the existence of universal
test is not assured.

n blind test w.r.t. P (·|y∞): U r.e. set relative to y∞,
Un := {x | (x, n) ∈ U},
∀n Un ⊇ Un+1, P (Ũn | y∞) < 2−n.

n x∞ is blind random w.r.t. P (·|y∞) iff x∞ /∈ ∩nŨn for all
blind test U w.r.t. P (·|y∞)

Note: Computability assumptions on P and P (·|y∞) are not
necessary.
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Theorem 6 (main theorem) Let P be a computable
probability on X × Y,X = Y = Ω. Under Assumption 1 (see
below), we have
(x∞, y∞) ∈ Ω2 is ML-random w.r.t. P on X × Y iff y∞ is
ML-random w.r.t. PY and x∞ is blind-random w.r.t. P (·|y∞)
relative to y∞.
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n The if part of the proof follows from the proof of
Theorem 4.2 in [Takahashi 08] since computability of the
conditional probability is not assumed in the proof.

n The proof of the only if part is similar to that of
Theorem 3.3 in [Takahashi 11], however since we do not
assume the computability of conditional probability, we
need modify the proof.
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1. Fix a ML-random ȳ∞ w.r.t. PY .

2. Let V ⊆ S be r.e. relative to ȳ∞ and P (Ṽ |ȳ∞) < ε, where
ε is a rational number.

3. From V , we construct r.e. U ⊆ S2 as follows:

U is r.e., Ũȳ∞ = V , and P (Ũ) < 2ε. (1)

4. B: partial comp.

V = {x | ∃i, y @ y∞ B(i, y) = x}

W = {(x, y) | ∃i, y @ y∞ B(i, y) = x}

Then W is r.e. and W̃ȳ∞ = V .
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For A ⊂ S2, Ã = ∪(x,y)∈A∆(x, y).
W ′ := {(x1, y1), (x2, y2), . . .} non-overlapping r.e. s.t. W̃ = W̃ ′

W ′
n = {(x1, y1), . . . (xn, yn)}

Yn = {y | ∆(y) ⊆ ∩iAi, Ai ∈ {∆(yi),∆(yi)c}, 1 ≤ i ≤ n}

Un := {(x, y) |
∑

x:(x,z)∈W ′
n,zvy

P (x|y) < ε, y ∈ Yn}

U := ∪nUn
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∪̃nU = ∪nŨn = ∪n(Ũn r Ũn+1) ∪ lim inf
n

Ũn,

(Ũn r Ũn+1) ∩ (Ũm r Ũm+1) = ∅, n 6= m and,

∪n(Ũn r Ũn+1) ∩ lim inf
n

Ũn = ∅,

Then

n U is r.e.,

n P (lim infn Ũn) ≤ ε,

n V = (lim infn Ũn)y∞ .
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P (Ũ) =
∑

n

P (Ũn r Ũn+1)+ lim inf
n

Ũn <
∑

n

P (Ũn r Ũn+1)+ ε.

Let f : Q → N s.t.
∑

n>f(ε) P (Ũn r Ũn+1) < ε.

Then P (Ũ) < 2ε.

Assumption 1: f is computable

Under the assumption ∪n>f(ε)Un satisfies (1).
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