Locally decodable codes: from computational complexity to cloud computing

Sergey Yekhanin

Microsoft Research

Error-correcting codes: paradigm

The paradigm dates back to 1940s (Shannon / Hamming)

Local decoding: paradigm

- First account: Reed's decoder for Muller's codes (1954)
- Implicit use: (1950s-1990s)
- Formal definition and systematic study (late 1990s) [Levin'95, STV'98, KT'00]
 - Original applications in computational complexity theory
 - Cryptography
 - Most recently used in practice to provide reliability in distributed storage

Local decoding: example

Message length: k = 3Codeword length: n = 7Corrupted locations: e = 3Locality: r = 2

Local decoding: example

Message length: k = 3Codeword length: n = 7Corrupted locations: e = 3Locality: r = 2

Locally decodable codes

<u>Definition</u>: A code $E: F_q^k \to F_q^n$ is *r*-locally decodable, if for every message *X*, each X_i can be recovered from reading some *r* symbols of E(X), even after up to *e* coordinates of E(X) are corrupted.

- (Erasures.) Decoder is aware of erased locations. Output is always correct.
- (Errors.) Decoder is randomized. Output is correct with probability 99%.

Locally decodable codes

Goal:

Understand the true shape of the tradeoff between redundancy n - k and locality r, for different settings of e (e.g., $e = \delta n$, n^{ϵ} , O(1).)

Taxonomy of known families of LDCs

Plan

- Part I: (Computational complexity)
 - Average case hardness
 - An avg. case hard language in EXP (unless EXP \subseteq BPP)
 - Construction of LDCs
 - Open questions
- Part II: (Distributed data storage)
 - Erasure coding for data storage
 - LDCs for data storage
 - Constructions and limitations
 - Open questions

Part I: Computational complexity

Average case complexity

- A problem is hard-on-average if any efficient algorithm errs on 10% of the inputs.
- Establishing hardness-on-average for a problem in NP is a major problem.
- Below we establish hardness-on-average for a problem in EXP, assuming EXP $\not\subseteq$ BPP.

<u>Theorem</u>: If there is an efficient algorithm that errs on <10% of L'; then EXP \subseteq BPP.

Average case complexity

<u>Theorem</u>: If there is an efficient algorithm that errs on <10% of L'; then EXP \subseteq BPP.

<u>Proof</u>: We obtain a BPP algorithm for *L*:

- Let A be the algorithm that errs on <10% of L';
 A gives us access to the corrupted encoding E(X).
- To decide if X_i invoke the local decoder for E(X).
- Time complexity is $(\log 2^k)^c * poly(k) = poly(k)$.
- Output is correct with probability 99%.

Reed Muller codes

- Parameters: $q, m, d = (1 4\delta)q$.
- Codewords: evaluations of degree d polynomials in m variables over F_q .
- Polynomial $f \in F_q[z_1, ..., z_m]$, deg f < d yields a codeword: $\langle f(\bar{x}) \rangle_{\bar{x} \in F_q^m}$

• Parameters:
$$n = q^m$$
, $k = \binom{m+d}{m}$, $r = q - 1$, $e = \delta n$.

Reed Muller codes: local decoding

- <u>Key observation</u>: Restriction of a codeword to an affine line yields an evaluation of a univariate polynomial $f|_L$ of degree at most d.
- To recover the value at \bar{x} :
 - Pick a random affine line through \bar{x} .
 - Do noisy polynomial interpolation.

• Locally decodable code: Decoder reads q - 1 random locations.

Reed Muller codes: parameters

$$n = q^m$$
, $k = {m+d \choose m}$, $d = (1-4\delta)q$, $r = q-1$, $e = \delta n$.

Setting parameters:

Reducing codeword length is a major open question.

Part II: Distributed storage

Data storage

- Store data reliably
- Keep it readily available for users

Data storage: Replication

- Store data reliably
- Keep it readily available for users

- Very large overhead
- Moderate reliability
- Local recovery:
 Lose one machine, access one

Data storage: Erasure coding

- Store data reliably
- Keep it readily available for users

- Low overhead
- High reliability
- <u>No local recovery</u>: Loose one machine, access k

k data chunks n-k parity chunks

Need: Erasure codes with local decoding

Codes for data storage

- <u>Goals</u>:
 - (Cost) minimize the number of parities.
 - (Reliability) tolerate any pattern of h+1 simultaneous failures.
 - (Availability) recover any data symbol by accessing at most **r** other symbols
 - (Computational efficiency) use a small finite field to define parities.

- <u>Def</u>: An (r,h) Local Reconstruction Code (LRC) encodes k symbols to n symbols, and
 - Corrects any pattern of h+1 simultaneous failures;
 - Recovers any single erased data symbol by accessing at most **r** other symbols.

- <u>Def</u>: An (r,h) Local Reconstruction Code (LRC) encodes k symbols to n symbols, and
 - Corrects any pattern of h+1 simultaneous failures;
 - Recovers any single erased data symbol by accessing at most **r** other symbols.
- <u>Theorem[GHSY]</u>: In any (r,h) (LRC), redundancy n-k satisfies $n k \ge \left[\frac{k}{r}\right] + h$.

- <u>Def</u>: An (r,h) Local Reconstruction Code (LRC) encodes k symbols to n symbols, and
 - Corrects any pattern of h+1 simultaneous failures;
 - Recovers any single erased data symbol by accessing at most **r** other symbols.
- <u>Theorem[GHSY]</u>: In any (r,h) (LRC), redundancy n-k satisfies $n k \ge \left[\frac{k}{r}\right] + h$.
- <u>Theorem[GHSY]</u>: If r | k and h<r+1; then any (r,h) LRC has the following topology:

- <u>Def</u>: An (r,h) Local Reconstruction Code (LRC) encodes k symbols to n symbols, and
 - Corrects any pattern of h+1 simultaneous failures;
 - Recovers any single erased data symbol by accessing at most **r** other symbols.
- <u>Theorem[GHSY]</u>: In any (r,h) (LRC), redundancy n-k satisfies $n k \ge \left[\frac{k}{r}\right] + h$.
- <u>Theorem[GHSY]</u>: If r | k and h<r+1; then any (r,h) LRC has the following topology:

• <u>Fact</u>: There exist (r,h) – LRCs with optimal redundancy over a field of size k+h.

Set k=8, r=4, and h=3.

• All 4-failure patterns are correctable.

- All 4-failure patterns are correctable.
- Some 5-failure patterns are not correctable.

- All 4-failure patterns are correctable.
- Some 5-failure patterns are not correctable.
- Other 5-failure patterns might be correctable.

- All 4-failure patterns are correctable.
- Some 5-failure patterns are not correctable.
- Other 5-failure patterns might be correctable.

Combinatorics of correctable failure patterns

<u>Def</u>: A regular failure pattern for a (r,h)-LRC is a pattern that can be obtained by failing one symbol in each local group and h extra symbols.

Theorem:

- Every failure pattern that is not dominated by a regular failure pattern is not correctable by any LRC.
- There exist LRCs that correct all regular failure patterns.

Maximally recoverable codes

<u>Def</u>: An (r,h)-LRC is maximally recoverable if it corrects all regular failure patterns.

<u>Theorem</u>: Maximally reliable (r,h)-LRCs exist.

Proof sketch: Pick the coefficients in heavy parities at random from a large finite field.

Asymptotic setting: $h = O(1), r = O(1), k \to \infty$.

Random choice needs a field of size at least: $\Omega(k^{h-1})$.

<u>The tradeoff</u>: Larger fields allow for more reliable codes up to maximal recoverability. We want both: small field size (efficiency) and maximal recoverability.

Explicit maximally recoverable codes

<u>Theorem</u>[GHJY]: There exist maximally recoverable (r,h)-LRC over a field of size

$$ck^{\left[(h-1)\left(1-\frac{1}{2^r}\right)\right]}$$

Comparison:

- Our alphabet grows as $O(k^{h-1})$ or slower.
- Beats random codes for small h and large h.
- Our only lower bound for the alphabet size thus far is k+1 independent of h.

Code construction

 $(\xi_1 + \xi_2) \times \lambda_1$ $(\xi_1 + \xi_2) \times \lambda_2$ $\xi_1 \times \lambda_3$

 $(\alpha_{11}+\alpha_{12})$ $(\alpha_{21}+\alpha_{22})$ α_{31}

Looking forward

The main challenge in LRC design is to obtain maximally reliable codes over small finite fields. Empirical evidence suggests that there is a tradeoff between reliability and computational efficiency.

Open questions:

- Study the tradeoff between redundancy and locality.
- Develop tight bounds for redundancy when *e* is a constant larger than 1.