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Error-correcting codes: paradigm 
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𝑋 ∈ 𝐹2
𝑘 E(𝑋) +noise 𝑋 E(𝑋) ∈ 𝐹2

𝑛 

The paradigm dates back to 1940s (Shannon / Hamming) 

Corrupts up to 𝑒 
coordinates. 



Local decoding: paradigm 
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Decoder 
Channel 

•  First account: Reed’s decoder for Muller’s codes (1954) 

•  Implicit use: (1950s-1990s) 

•  Formal definition and systematic study (late 1990s) [Levin’95, STV’98, KT’00] 

 Original applications in computational complexity theory 

 Cryptography 

 Most recently used in practice to provide reliability in distributed storage 

Local decoder runs in time much smaller than the message length! 

𝑋 ∈ 𝐹2
𝑘 E(𝑋) ∈ 𝐹2

𝑛 E(𝑋) +noise  𝑋𝑖 

Corrupts up to 𝑒 
coordinates. 

Reads up to 𝑟 
coordinates. 



Local decoding: example 
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Message length: k = 3 
Codeword length: n = 7 
Corrupted locations: 𝑒 = 3 
Locality: 𝑟 = 2 
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Locally decodable codes 

Definition: A code E: 𝐹𝑞
𝑘 → 𝐹𝑞

𝑛  is 𝑟-locally decodable, if for every message 𝑋, 

each 𝑋𝑖 can be recovered from reading some 𝑟 symbols of 𝐸(𝑋), even after up 
to 𝑒 coordinates of 𝐸(𝑋) are corrupted. 
 
• (Erasures.) Decoder is aware of erased locations. Output is always correct. 
• (Errors.) Decoder is randomized. Output is correct with probability 99%.  
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k symbol message 

n symbol codeword Noise 

Decoder reads only r symbols 



Locally decodable codes 

Goal: 
Understand the true shape of the tradeoff between redundancy 𝑛 − 𝑘 and 
locality 𝑟, for different settings of 𝑒 (e.g., 𝑒 = 𝛿𝑛, 𝑛𝜖 , 𝑂 1 .) 
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Taxonomy of known families of LDCs 
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Plan 

• Part I: (Computational complexity) 

• Average case hardness 

• An avg. case hard language in EXP (unless EXP ⊆ BPP) 

• Construction of LDCs 

• Open questions 

  

• Part II: (Distributed data storage) 

• Erasure coding for data storage 

• LDCs for data storage 

• Constructions and limitations 

• Open questions 



Part I: Computational complexity 



Average case complexity 

• A problem is hard-on-average if any efficient algorithm errs on 10% of the inputs. 

• Establishing hardness-on-average for a problem in NP is a major problem. 

• Below we establish hardness-on-average for a problem in EXP, assuming EXP ⊈ BPP.  

Construction [STV]: 

E: 𝐹2
𝑘 → 𝐹2

𝑛  
𝑛 = 𝑝𝑜𝑙𝑦 𝑘 , 
𝑟 = (log 𝑘)𝑐 , 
𝑒 = 𝑛/10. 

Theorem: If there is an efficient algorithm that errs on <10% of 𝐿′; then EXP ⊆ BPP. 

𝐿 is EXP-complete 𝐿′ is in EXP 
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Average case complexity 

E: 𝐹2
𝑘 → 𝐹2

𝑛  
𝑛 = 𝑝𝑜𝑙𝑦 𝑘 , 
𝑟 = (log 𝑘)𝑐 , 
𝑒 = 𝑛/10. 

Theorem: If there is an efficient algorithm that errs on <10% of 𝐿′; then EXP ⊆ BPP. 

𝐿 is EXP-complete 𝐿′ is in EXP 
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Proof: We obtain a BPP algorithm for 𝐿: 
 
• Let A be the algorithm that errs on <10% of 𝐿′; 

    A gives us access to the corrupted encoding 𝐸(𝑋).  
 
• To decide if 𝑋𝑖 invoke the local decoder for 𝐸(𝑋).  
• Time complexity is  (log 2𝑘)𝑐∗ 𝑝𝑜𝑙𝑦 𝑘 = 𝑝𝑜𝑙𝑦 𝑘 .           

 
• Output is correct with probability 99%. 



Reed Muller codes 

 

• Parameters: 𝑞,𝑚, 𝑑 = 1 − 4𝛿 𝑞. 
 

• Codewords: evaluations of degree 𝑑 polynomials in 𝑚 variables over 𝐹𝑞. 

• Polynomial 𝑓 ∈ 𝐹𝑞 𝑧1, … , 𝑧𝑚 , deg f < 𝑑 yields a codeword: 𝑓(𝑥 ) 𝑥 ∈𝐹𝑞
𝑚 

• Parameters:  𝑛 = 𝑞𝑚,   𝑘 =
𝑚 + 𝑑
𝑚

,  𝑟 = 𝑞 − 1,  𝑒 = 𝛿𝑛. 



Reed Muller codes: local decoding 

.,, dmq
• Key observation: Restriction of a codeword to an affine line yields an 

evaluation of a univariate polynomial  𝑓 𝐿 of degree at most 𝑑. 

 

• To recover the value at 𝑥 : 

– Pick a random affine line through 𝑥 . 

– Do noisy polynomial interpolation. 

 

 

 

 

 

 

• Locally decodable code: Decoder reads 𝑞 − 1 random locations. 

 

    
𝑥  

𝐹𝑞
𝑚 



Reed Muller codes: parameters 

𝑛 = 𝑞𝑚,   𝑘 =
𝑚 + 𝑑
𝑚

, 𝑑 = 1 − 4𝛿 𝑞,  𝑟 = 𝑞 − 1,  𝑒 = 𝛿𝑛. 

Setting parameters: 

• q = 𝑂 1 , 𝑚 → ∞:       𝑟 = 𝑂 1 , 𝑛 = exp 𝑘
1

𝑟−1 . 
 

• q = 𝑚2                    ∶       𝑟 = (log 𝑘)2, 𝑛 = 𝑝𝑜𝑙𝑦 𝑘 . 
 

• q → ∞, 𝑚 = 𝑂 1 :       𝑟 = 𝑘𝜖 , 𝑛 = 𝑂 𝑘 .   

Reducing codeword length is a major open question. 

Better  
codes are  

known 



Part II: Distributed storage 



Data storage 

• Store data reliably 

• Keep it readily available for users 



Data storage: Replication 

• Store data reliably 

• Keep it readily available for users 

• Very large overhead 

• Moderate reliability 

 

• Local recovery: 

    Lose one machine, access one 



Data storage: Erasure coding 

• Store data reliably 

• Keep it readily available for users 

• Low overhead 

• High reliability 

 

• No local recovery: 

     Loose one machine, access k 

… 

… … 

k data chunks n-k parity chunks 

Need: Erasure codes with local decoding 



Codes for data storage 

• Goals:  

• (Cost) minimize the number of parities. 

• (Reliability) tolerate any pattern of h+1 simultaneous failures. 

• (Availability) recover any data symbol by accessing at most r other symbols 

• (Computational efficiency) use a small finite field to define parities.  

X1 X2 Xk … 
P1 … 

Pn-k 



Local reconstruction codes 

• Def: An (r,h) – Local Reconstruction Code (LRC) encodes k symbols to n symbols, and  

• Corrects any pattern of h+1 simultaneous failures; 

• Recovers any single erased data symbol by accessing at most r other symbols. 



Local reconstruction codes 

• Def: An (r,h) – Local Reconstruction Code (LRC) encodes k symbols to n symbols, and  

• Corrects any pattern of h+1 simultaneous failures; 

• Recovers any single erased data symbol by accessing at most r other symbols. 

• Theorem[GHSY]: In any (r,h) – (LRC),  redundancy n-k satisfies 𝑛 − 𝑘 ≥
𝑘

𝑟
+ ℎ. 
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parities 

Data symbols 

Local  
group 



Local reconstruction codes 

• Def: An (r,h) – Local Reconstruction Code (LRC) encodes k symbols to n symbols, and  

• Corrects any pattern of h+1 simultaneous failures; 

• Recovers any single erased data symbol by accessing at most r other symbols. 

X1 Xr … 
Xk-r Xk 

… 
Hh H1 

L1 Lg … 

… … 

• Fact: There exist (r,h) – LRCs with optimal redundancy over a field of size k+h. 

Light  
parities 

Heavy  
parities 

Data symbols 

Local  
group 

• Theorem[GHSY]: In any (r,h) – (LRC),  redundancy n-k satisfies 𝑛 − 𝑘 ≥
𝑘

𝑟
+ ℎ. 

• Theorem[GHSY]: If r | k and h<r+1; then any (r,h) – LRC has the following topology:  



Reliability 

Set k=8, r=4, and h=3. 
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H3 H2 H1 

L2 



Reliability 

Set k=8, r=4, and h=3. 

X1 

L1 

• All 4-failure patterns are correctable. 
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L2 
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Combinatorics of correctable failure patterns 

Def: A regular failure pattern for a (r,h)-LRC is a pattern that can be obtained by failing 
one symbol in each local group and h extra symbols. 

X1 

L1 

X2 X3 X4 X5 X6 X7 X8 

H3 H2 H1 

L2 

X1 

L1 

X2 X3 X4 X5 X6 X7 X8 

H3 H2 H1 

L2 

Theorem:  

• Every failure pattern that is not dominated by a regular failure pattern is not 
correctable by any LRC. 

• There exist LRCs that correct all regular failure patterns.  

 



Maximally recoverable codes 

Def: An (r,h)-LRC is maximally recoverable if it corrects all regular failure patterns. 

Theorem: Maximally reliable (r,h)-LRCs exist. 

Proof sketch: Pick the coefficients in heavy parities at random from a large finite field.       
  

The tradeoff: Larger fields allow for more reliable codes up to maximal recoverability.  

                     We want both: small field size (efficiency) and maximal recoverability. 

Asymptotic setting: ℎ = 𝑂 1 , 𝑟 = 𝑂 1 , 𝑘 → ∞. 

Random choice needs a field of size at least: Ω 𝑘ℎ−1 . 



Explicit maximally recoverable codes 

Theorem[GHJY]: There exist maximally recoverable (r,h)-LRC over a field of size  

𝑐𝑘
ℎ−1 1−

1
2𝑟 . 

Comparison: 

• Our alphabet grows as 𝑂 𝑘ℎ−1  or slower. 

• Beats random codes for small h and large h. 

• Our only lower bound for the alphabet size thus far is k+1 independent of h. 



Code construction 

We use dual constraints to specify the code. 

𝒙𝟏 𝒙𝟐 … 𝒙𝒓 𝑳𝟏 … 𝒙𝒌−𝒓 𝒙𝒌−𝒓+𝟏 … 𝒙𝒌 𝑳𝒌/𝒓 𝑯𝟏 𝑯𝟐 … 𝑯𝒉 

1 1 … 1 1 

1 1 … 1 1 

𝑘

𝑟
 

h 

𝛼𝑖𝑗 

𝛼𝑖𝑗
2  

… 

𝛼𝑖𝑗
2ℎ−1  

Element 𝛼𝑖𝑗 appears in the j-th column of the i-th  group.  

We consider a sequence field extensions 𝐹2 ⊆ 𝐹2𝑎 ⊆ 𝐹2𝑏.   

{𝜉𝑗} ⊆ 𝐹2𝑎 form a basis over 𝐹2.  

{𝜆𝑖} ⊆ 𝐹2𝑏 are ℎ-independent over 𝐹2𝑎.  

𝛼𝑖𝑗=𝜉𝑗 × 𝜆𝑖. 

𝑘

𝑟
+ 1 local groups. 



Erasure correction 
k=8, r=4, h=2. 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝑳𝟏 𝒙𝟓 𝒙𝟔 𝒙𝟕 𝒙𝟖 𝑳𝟐 𝑯𝟏 𝑯𝟐 𝑯𝟑 

1 1 1 1 1 

1 1 1 1 1 

𝛼11 𝛼12 𝛼21 𝛼22 𝛼31 

𝛼11
2  𝛼12

2  𝛼21
2  𝛼22

2  𝛼31
2  

𝛼11
4  𝛼12

4  𝛼21
4  𝛼22

4  𝛼31
4  

1 1 

1 1 

𝛼11 𝛼12 𝛼21 𝛼22 𝛼31 

𝛼11
2  𝛼12

2  𝛼21
2  𝛼22

2  𝛼31
2  

𝛼11
4  𝛼12

4  𝛼21
4  𝛼22

4  𝛼31
4  

𝛼11+𝛼12 𝛼21+𝛼22 𝛼31 

𝛼11
2 +𝛼12

2  𝛼21
2 +𝛼22

2  𝛼31
2  

𝛼11
4 +𝛼12

4  𝛼21
4 +𝛼22

4  𝛼31
4  

(𝛼11+𝛼12) (𝛼21+𝛼22) 𝛼31 

(𝛼11+𝛼12) 
2 (𝛼21+𝛼22 )2 𝛼31

2  

(𝛼11+𝛼12) 
4 (𝛼21+𝛼22 )4 𝛼31

4  

(𝛼11+𝛼12) (𝛼21+𝛼22) 𝛼31 (𝜉1 + 𝜉2) × 𝜆1 (𝜉1 + 𝜉2) × 𝜆2 𝜉1 × 𝜆3 



Looking forward 

The main challenge in LRC design is to obtain maximally reliable codes over small finite 
fields. Empirical evidence suggests that there is a tradeoff between reliability and 
computational efficiency. 

Open questions: 

• Study the tradeoff between redundancy and locality. 

• Develop tight bounds for redundancy when 𝑒 is a constant larger than 1. 


