Locally decodable codes:

from computational complexity to cloud computing

Sergey Yekhanin

Microsoft Research

Error-correcting codes: paradigm

The paradigm dates back to 1940s (Shannon / Hamming)

Local decoding: paradigm

Local decoder runs in time much smaller than the message length!

- First account: Reed's decoder for Muller's codes (1954)
- Implicit use: (1950s-1990s)
- Formal definition and systematic study (late 1990s) [Levin'95, STV'98, $\mathrm{KT}^{\prime} 00$]
- Original applications in computational complexity theory
- Cryptography
- Most recently used in practice to provide reliability in distributed storage

Local decoding: example

Message length: $\mathrm{k}=3$
Codeword length: $\mathrm{n}=7$
Corrupted locations: $e=3$
Locality: $r=2$

Local decoding: example

Message length: $\mathrm{k}=3$
Codeword length: $\mathrm{n}=7$
Corrupted locations: $e=3$
Locality: $r=2$

Locally decodable codes

Definition: A code E: $F_{q}^{k} \rightarrow F_{q}^{n}$ is r-locally decodable, if for every message X, each X_{i} can be recovered from reading some r symbols of $E(X)$, even after up to e coordinates of $E(X)$ are corrupted.

- (Erasures.) Decoder is aware of erased locations. Output is always correct.
- (Errors.) Decoder is randomized. Output is correct with probability 99\%.
k symbol message
Decoder reads only r symbols

Locally decodable codes

Goal:
Understand the true shape of the tradeoff between redundancy $n-k$ and locality r, for different settings of e (e.g., $e=\delta n, n^{\epsilon}, O(1)$.)

Taxonomy of known families of LDCs

Plan

- Part I: (Computational complexity)
- Average case hardness
- An avg. case hard language in EXP (unless EXP \subseteq BPP)
- Construction of LDCs
- Open questions
- Part II: (Distributed data storage)
- Erasure coding for data storage
- LDCs for data storage
- Constructions and limitations
- Open questions

Part I: Computational complexity

Average case complexity

- A problem is hard-on-average if any efficient algorithm errs on 10% of the inputs.
- Establishing hardness-on-average for a problem in NP is a major problem.
- Below we establish hardness-on-average for a problem in EXP, assuming EXP \ddagger BPP.

Construction [STV]:

Level k is a string X of length 2^{k}

L is EXP-complete

L^{\prime} is in EXP

$$
\begin{gathered}
\mathrm{E}: F_{2}^{k} \rightarrow F_{2}^{n} \\
n=\operatorname{poly}(k), \\
r=(\log k)^{c} \\
e=n / 10
\end{gathered}
$$

Theorem: If there is an efficient algorithm that errs on $<10 \%$ of L^{\prime}; then EXP \subseteq BPP.

Average case complexity

Theorem: If there is an efficient algorithm that errs on $<10 \%$ of L^{\prime}; then EXP \subseteq BPP.
Proof: We obtain a BPP algorithm for L :

- Let A be the algorithm that errs on $<10 \%$ of L^{\prime};
A gives us access to the corrupted encoding $E(X)$.
- To decide if X_{i} invoke the local decoder for $E(X)$.
- Time complexity is $\left(\log 2^{k}\right)^{c} * \operatorname{poly}(k)=\operatorname{poly}(k)$.
- Output is correct with probability 99%.

L is EXP-complete

L^{\prime} is in EXP

$$
\begin{gathered}
\mathrm{E}: F_{2}^{k} \rightarrow F_{2}^{n} \\
n=\operatorname{poly}(k), \\
r=(\log k)^{c} \\
e=n / 10
\end{gathered}
$$

Reed Muller codes

- Parameters: $q, m, d=(1-4 \delta) q$.
- Codewords: evaluations of degree d polynomials in m variables over F_{q}.
- Polynomial $f \in F_{q}\left[z_{1}, \ldots, z_{m}\right], \operatorname{deg} \mathrm{f}<d$ yields a codeword: $\langle f(\bar{x})\rangle_{\bar{x} \in F_{q}^{m}}$
- Parameters: $n=q^{m}, \quad k=\binom{m+d}{m}, r=q-1, \quad e=\delta n$.

Reed Muller codes: local decoding

- Key observation: Restriction of a codeword to an affine line yields an evaluation of a univariate polynomial $\left.f\right|_{L}$ of degree at most d.
- To recover the value at \bar{x} :
- Pick a random affine line through \bar{x}.
- Do noisy polynomial interpolation.

- Locally decodable code: Decoder reads $q-1$ random locations.

Reed Muller codes: parameters

$$
n=q^{m}, \quad k=\binom{m+d}{m}, \quad d=(1-4 \delta) q, \quad r=q-1, \quad e=\delta n .
$$

Setting parameters:

- $\mathrm{q}=O(1), m \rightarrow \infty: \quad r=O(1), n=\exp \left(k^{\frac{1}{r-1}}\right)$.
- $\mathrm{q}=m^{2} \quad: \quad r=(\log k)^{2}, n=\operatorname{poly}(k)$.
- $\mathrm{q} \rightarrow \infty, m=O(1): r=k^{\epsilon}, n=O(k)$.

Reducing codeword length is a major open question.

Part II: Distributed storage

Data storage

- Store data reliably
- Keep it readily available for users

Data storage: Replication

- Store data reliably
- Keep it readily available for users

- Very large overhead
- Moderate reliability
- Local recovery:

Lose one machine, access one

Data storage: Erasure coding

Need: Erasure codes with local decoding

Codes for data storage

- Goals:
- (Cost) minimize the number of parities.
- (Reliability) tolerate any pattern of $h+1$ simultaneous failures.
- (Availability) recover any data symbol by accessing at most r other symbols
- (Computational efficiency) use a small finite field to define parities.

Local reconstruction codes

- Def: An (r,h) - Local Reconstruction Code (LRC) encodes k symbols to n symbols, and
- Corrects any pattern of $\mathrm{h}+1$ simultaneous failures;
- Recovers any single erased data symbol by accessing at most r other symbols.

Local reconstruction codes

- Def: An (r,h) - Local Reconstruction Code (LRC) encodes k symbols to n symbols, and
- Corrects any pattern of $\mathrm{h}+1$ simultaneous failures;
- Recovers any single erased data symbol by accessing at most r other symbols.
- Theorem[GHSY]: In any (r,h) - (LRC), redundancy $n-k$ satisfies $n-k \geq\left\lceil\frac{k}{r}\right\rceil+h$.

Local reconstruction codes

- Def: An (r,h) - Local Reconstruction Code (LRC) encodes k symbols to n symbols, and
- Corrects any pattern of $\mathrm{h}+1$ simultaneous failures;
- Recovers any single erased data symbol by accessing at most r other symbols.
- Theorem[GHSY]: In any (r,h) - (LRC), redundancy n-k satisfies $n-k \geq\left\lceil\frac{k}{r}\right\rceil+h$.
- Theorem[GHSY]: If $r \mid k$ and $h<r+1$; then any $(r, h)-L R C$ has the following topology:

Local reconstruction codes

- Def: An (r,h) - Local Reconstruction Code (LRC) encodes k symbols to n symbols, and
- Corrects any pattern of $\mathrm{h}+1$ simultaneous failures;
- Recovers any single erased data symbol by accessing at most r other symbols.
- Theorem[GHSY]: In any (r,h) - (LRC), redundancy n-k satisfies $n-k \geq\left\lceil\frac{k}{r}\right\rceil+h$.
- Theorem[GHSY]: If $\mathrm{r} \mid \mathrm{k}$ and $\mathrm{h}<\mathrm{r}+1$; then any (r, h) - LRC has the following topology:

- Fact: There exist (r,h) - LRCs with optimal redundancy over a field of size $\mathrm{k}+\mathrm{h}$.

Reliability

Set $k=8, r=4$, and $h=3$.

Reliability

Set $k=8, r=4$, and $h=3$.

- All 4-failure patterns are correctable.

Reliability

Set $k=8, r=4$, and $h=3$.

- All 4-failure patterns are correctable.
- Some 5 -failure patterns are not correctable.

Reliability

Set $k=8, r=4$, and $h=3$.

- All 4-failure patterns are correctable.
- Some 5 -failure patterns are not correctable.
- Other 5-failure patterns might be correctable.

Reliability

Set $k=8, r=4$, and $h=3$.

- All 4-failure patterns are correctable.
- Some 5 -failure patterns are not correctable.
- Other 5-failure patterns might be correctable.

Combinatorics of correctable failure patterns

Def: A regular failure pattern for a (r, h)-LRC is a pattern that can be obtained by failing one symbol in each local group and h extra symbols.

Theorem:

- Every failure pattern that is not dominated by a regular failure pattern is not correctable by any LRC.
- There exist LRCs that correct all regular failure patterns.

Maximally recoverable codes

Def: An (r,h)-LRC is maximally recoverable if it corrects all regular failure patterns.

Theorem: Maximally reliable (r, h)-LRCs exist.
Proof sketch: Pick the coefficients in heavy parities at random from a large finite field.

Asymptotic setting: $h=O(1), r=O(1), k \rightarrow \infty$.
Random choice needs a field of size at least: $\Omega\left(k^{h-1}\right)$.

The tradeoff: Larger fields allow for more reliable codes up to maximal recoverability. We want both: small field size (efficiency) and maximal recoverability.

Explicit maximally recoverable codes

Theorem[GHJY]: There exist maximally recoverable (r, h)-LRC over a field of size

$$
c k\left[(h-1)\left(1-\frac{1}{2^{r}}\right)\right] .
$$

Comparison:

- Our alphabet grows as $O\left(k^{h-1}\right)$ or slower.
- Beats random codes for small h and large h.
- Our only lower bound for the alphabet size thus far is $k+1$ independent of h.

Code construction

We use dual constraints to specify the code.
$\frac{k}{r}+1$ local groups.

Element $\alpha_{i j}$ appears in the j-th column of the i -th group.
We consider a sequence field extensions $F_{2} \subseteq F_{2^{a}} \subseteq F_{2^{b}}$.
$\left\{\xi_{j}\right\} \subseteq F_{2^{a}}$ form a basis over F_{2}.
$\left\{\lambda_{i}\right\} \subseteq F_{2^{b}}$ are h-independent over $F_{2^{a}}$.
$\alpha_{i j}=\xi_{j} \times \lambda_{i}$.

Erasure correction

11

$\alpha_{11}+\alpha_{12}$	$\alpha_{21}+\alpha_{22}$	α_{31}
$\alpha_{11}^{2}+\alpha_{12}^{2}$	$\alpha_{21}^{2}+\alpha_{22}^{2}$	α_{31}^{2}
$\alpha_{11}^{4}+\alpha_{12}^{4}$	$\alpha_{21}^{4}+\alpha_{22}^{4}$	α_{31}^{4}

$$
\begin{array}{ccc}
\left(\alpha_{11}+\alpha_{12}\right) & \left(\alpha_{21}+\alpha_{22}\right) & \alpha_{31} \\
\left(\alpha_{11}+\alpha_{12}\right)^{2} & \left(\alpha_{21}+\alpha_{22}\right)^{2} & \alpha_{31}^{2} \\
\left(\alpha_{11}+\alpha_{12}\right)^{4} & \left(\alpha_{21}+\alpha_{22}\right)^{4} & \alpha_{31}^{4}
\end{array}
$$

$\left(\alpha_{11}+\alpha_{12}\right) \quad\left(\alpha_{21}+\alpha_{22}\right) \quad \alpha_{31}$

$$
\left(\xi_{1}+\xi_{2}\right) \times \lambda_{1} \quad\left(\xi_{1}+\xi_{2}\right) \times \lambda_{2} \quad \xi_{1} \times \lambda_{3}
$$

Looking forward

The main challenge in LRC design is to obtain maximally reliable codes over small finite fields. Empirical evidence suggests that there is a tradeoff between reliability and computational efficiency.

Open questions:

- Study the tradeoff between redundancy and locality.
- Develop tight bounds for redundancy when e is a constant larger than 1 .

