
Locally decodable codes:
from computational complexity to cloud computing

Sergey Yekhanin

Microsoft Research

Error-correcting codes: paradigm

0110001 011000100101 0110001 01*00*10010*

Encoder Decoder Channel

𝑋 ∈ 𝐹2
𝑘 E(𝑋) +noise 𝑋 E(𝑋) ∈ 𝐹2

𝑛

The paradigm dates back to 1940s (Shannon / Hamming)

Corrupts up to 𝑒
coordinates.

Local decoding: paradigm

0110001 011000100101 1 01*00*10010*

Encoder
Local

Decoder
Channel

• First account: Reed’s decoder for Muller’s codes (1954)

• Implicit use: (1950s-1990s)

• Formal definition and systematic study (late 1990s) [Levin’95, STV’98, KT’00]

 Original applications in computational complexity theory

 Cryptography

 Most recently used in practice to provide reliability in distributed storage

Local decoder runs in time much smaller than the message length!

𝑋 ∈ 𝐹2
𝑘 E(𝑋) ∈ 𝐹2

𝑛 E(𝑋) +noise 𝑋𝑖

Corrupts up to 𝑒
coordinates.

Reads up to 𝑟
coordinates.

Local decoding: example

X1

X

E(X)

X2 X3

X1

X1X2

X2 X3

X1X3 X2X3

X1X2X3

Message length: k = 3
Codeword length: n = 7
Corrupted locations: 𝑒 = 3
Locality: 𝑟 = 2

Local decoding: example

X1

X

E(X)

X2 X3

X1

X1X2

X2 X3

X1X3 X2X3

X1X2X3

Message length: k = 3
Codeword length: n = 7
Corrupted locations: 𝑒 = 3
Locality: 𝑟 = 2

Locally decodable codes

Definition: A code E: 𝐹𝑞
𝑘 → 𝐹𝑞

𝑛 is 𝑟-locally decodable, if for every message 𝑋,

each 𝑋𝑖 can be recovered from reading some 𝑟 symbols of 𝐸(𝑋), even after up
to 𝑒 coordinates of 𝐸(𝑋) are corrupted.

• (Erasures.) Decoder is aware of erased locations. Output is always correct.
• (Errors.) Decoder is randomized. Output is correct with probability 99%.

0 0 1 0 1 … 0 1 1

0 1 … 0 1

0 1 0 … 0 1

k symbol message

n symbol codeword Noise

Decoder reads only r symbols

Locally decodable codes

Goal:
Understand the true shape of the tradeoff between redundancy 𝑛 − 𝑘 and
locality 𝑟, for different settings of 𝑒 (e.g., 𝑒 = 𝛿𝑛, 𝑛𝜖 , 𝑂 1 .)

𝑒

𝑟

𝑂(1) 𝑛𝜀 𝛿𝑛

𝑂(1)

𝑘𝜀

(log 𝑘)𝑐

Taxonomy of known families of LDCs

Multiplicity
codes

Matching
vector
codes

Reed Muller
codes

Local
reconst-
ruction
codes

Projective
geometry

codes

Plan

• Part I: (Computational complexity)

• Average case hardness

• An avg. case hard language in EXP (unless EXP ⊆ BPP)

• Construction of LDCs

• Open questions

• Part II: (Distributed data storage)

• Erasure coding for data storage

• LDCs for data storage

• Constructions and limitations

• Open questions

Part I: Computational complexity

Average case complexity

• A problem is hard-on-average if any efficient algorithm errs on 10% of the inputs.

• Establishing hardness-on-average for a problem in NP is a major problem.

• Below we establish hardness-on-average for a problem in EXP, assuming EXP ⊈ BPP.

Construction [STV]:

E: 𝐹2
𝑘 → 𝐹2

𝑛
𝑛 = 𝑝𝑜𝑙𝑦 𝑘 ,
𝑟 = (log 𝑘)𝑐 ,
𝑒 = 𝑛/10.

Theorem: If there is an efficient algorithm that errs on <10% of 𝐿′; then EXP ⊆ BPP.

𝐿 is EXP-complete 𝐿′ is in EXP

0 1
1 0

1
0

0
0 0 1

1 1
1 1 Level 𝑘 is

 a string 𝑋 of

length 2𝑘

𝐸(𝑋)
𝑋

Average case complexity

E: 𝐹2
𝑘 → 𝐹2

𝑛
𝑛 = 𝑝𝑜𝑙𝑦 𝑘 ,
𝑟 = (log 𝑘)𝑐 ,
𝑒 = 𝑛/10.

Theorem: If there is an efficient algorithm that errs on <10% of 𝐿′; then EXP ⊆ BPP.

𝐿 is EXP-complete 𝐿′ is in EXP

0 1
1 0

1
0

0
1 0 1

1 0
1 1

𝐸(𝑋)
𝑋

Proof: We obtain a BPP algorithm for 𝐿:

• Let A be the algorithm that errs on <10% of 𝐿′;

 A gives us access to the corrupted encoding 𝐸(𝑋).

• To decide if 𝑋𝑖 invoke the local decoder for 𝐸(𝑋).
• Time complexity is (log 2𝑘)𝑐∗ 𝑝𝑜𝑙𝑦 𝑘 = 𝑝𝑜𝑙𝑦 𝑘 .

• Output is correct with probability 99%.

Reed Muller codes

• Parameters: 𝑞,𝑚, 𝑑 = 1 − 4𝛿 𝑞.

• Codewords: evaluations of degree 𝑑 polynomials in 𝑚 variables over 𝐹𝑞.

• Polynomial 𝑓 ∈ 𝐹𝑞 𝑧1, … , 𝑧𝑚 , deg f < 𝑑 yields a codeword: 𝑓(𝑥) 𝑥 ∈𝐹𝑞
𝑚

• Parameters: 𝑛 = 𝑞𝑚, 𝑘 =
𝑚 + 𝑑
𝑚

, 𝑟 = 𝑞 − 1, 𝑒 = 𝛿𝑛.

Reed Muller codes: local decoding

.,, dmq
• Key observation: Restriction of a codeword to an affine line yields an

evaluation of a univariate polynomial 𝑓 𝐿 of degree at most 𝑑.

• To recover the value at 𝑥 :

– Pick a random affine line through 𝑥 .

– Do noisy polynomial interpolation.

• Locally decodable code: Decoder reads 𝑞 − 1 random locations.

𝑥

𝐹𝑞
𝑚

Reed Muller codes: parameters

𝑛 = 𝑞𝑚, 𝑘 =
𝑚 + 𝑑
𝑚

, 𝑑 = 1 − 4𝛿 𝑞, 𝑟 = 𝑞 − 1, 𝑒 = 𝛿𝑛.

Setting parameters:

• q = 𝑂 1 , 𝑚 → ∞: 𝑟 = 𝑂 1 , 𝑛 = exp 𝑘
1

𝑟−1 .

• q = 𝑚2 ∶ 𝑟 = (log 𝑘)2, 𝑛 = 𝑝𝑜𝑙𝑦 𝑘 .

• q → ∞, 𝑚 = 𝑂 1 : 𝑟 = 𝑘𝜖 , 𝑛 = 𝑂 𝑘 .

Reducing codeword length is a major open question.

Better
codes are

known

Part II: Distributed storage

Data storage

• Store data reliably

• Keep it readily available for users

Data storage: Replication

• Store data reliably

• Keep it readily available for users

• Very large overhead

• Moderate reliability

• Local recovery:

 Lose one machine, access one

Data storage: Erasure coding

• Store data reliably

• Keep it readily available for users

• Low overhead

• High reliability

• No local recovery:

 Loose one machine, access k

…

… …

k data chunks n-k parity chunks

Need: Erasure codes with local decoding

Codes for data storage

• Goals:

• (Cost) minimize the number of parities.

• (Reliability) tolerate any pattern of h+1 simultaneous failures.

• (Availability) recover any data symbol by accessing at most r other symbols

• (Computational efficiency) use a small finite field to define parities.

X1 X2 Xk …
P1 …

Pn-k

Local reconstruction codes

• Def: An (r,h) – Local Reconstruction Code (LRC) encodes k symbols to n symbols, and

• Corrects any pattern of h+1 simultaneous failures;

• Recovers any single erased data symbol by accessing at most r other symbols.

Local reconstruction codes

• Def: An (r,h) – Local Reconstruction Code (LRC) encodes k symbols to n symbols, and

• Corrects any pattern of h+1 simultaneous failures;

• Recovers any single erased data symbol by accessing at most r other symbols.

• Theorem[GHSY]: In any (r,h) – (LRC), redundancy n-k satisfies 𝑛 − 𝑘 ≥
𝑘

𝑟
+ ℎ.

Local reconstruction codes

• Def: An (r,h) – Local Reconstruction Code (LRC) encodes k symbols to n symbols, and

• Corrects any pattern of h+1 simultaneous failures;

• Recovers any single erased data symbol by accessing at most r other symbols.

• Theorem[GHSY]: In any (r,h) – (LRC), redundancy n-k satisfies 𝑛 − 𝑘 ≥
𝑘

𝑟
+ ℎ.

• Theorem[GHSY]: If r | k and h<r+1; then any (r,h) – LRC has the following topology:

X1 Xr …
Xk-r Xk

…
Hh H1

L1 Lg …

… …

Light
parities

Heavy
parities

Data symbols

Local
group

Local reconstruction codes

• Def: An (r,h) – Local Reconstruction Code (LRC) encodes k symbols to n symbols, and

• Corrects any pattern of h+1 simultaneous failures;

• Recovers any single erased data symbol by accessing at most r other symbols.

X1 Xr …
Xk-r Xk

…
Hh H1

L1 Lg …

… …

• Fact: There exist (r,h) – LRCs with optimal redundancy over a field of size k+h.

Light
parities

Heavy
parities

Data symbols

Local
group

• Theorem[GHSY]: In any (r,h) – (LRC), redundancy n-k satisfies 𝑛 − 𝑘 ≥
𝑘

𝑟
+ ℎ.

• Theorem[GHSY]: If r | k and h<r+1; then any (r,h) – LRC has the following topology:

Reliability

Set k=8, r=4, and h=3.

X1

L1

X2 X3 X4
X5 X6 X7 X8

H3 H2 H1

L2

Reliability

Set k=8, r=4, and h=3.

X1

L1

• All 4-failure patterns are correctable.

X2 X3 X4
X5 X6 X7 X8

H3 H2 H1

L2

Reliability

Set k=8, r=4, and h=3.

X1

L1

• All 4-failure patterns are correctable.

• Some 5-failure patterns are not correctable.

X2 X3 X4
X5 X6 X7 X8

H3 H2 H1

L2

Reliability

Set k=8, r=4, and h=3.

X1

L1

• All 4-failure patterns are correctable.

• Some 5-failure patterns are not correctable.

• Other 5-failure patterns might be correctable.

X2 X3 X4
X5 X6 X7 X8

H3 H2 H1

L2

Reliability

Set k=8, r=4, and h=3.

X1

L1

• All 4-failure patterns are correctable.

• Some 5-failure patterns are not correctable.

• Other 5-failure patterns might be correctable.

X2 X3 X4
X5 X6 X7 X8

H3 H2 H1

L2

Combinatorics of correctable failure patterns

Def: A regular failure pattern for a (r,h)-LRC is a pattern that can be obtained by failing
one symbol in each local group and h extra symbols.

X1

L1

X2 X3 X4 X5 X6 X7 X8

H3 H2 H1

L2

X1

L1

X2 X3 X4 X5 X6 X7 X8

H3 H2 H1

L2

Theorem:

• Every failure pattern that is not dominated by a regular failure pattern is not
correctable by any LRC.

• There exist LRCs that correct all regular failure patterns.

Maximally recoverable codes

Def: An (r,h)-LRC is maximally recoverable if it corrects all regular failure patterns.

Theorem: Maximally reliable (r,h)-LRCs exist.

Proof sketch: Pick the coefficients in heavy parities at random from a large finite field.

The tradeoff: Larger fields allow for more reliable codes up to maximal recoverability.

 We want both: small field size (efficiency) and maximal recoverability.

Asymptotic setting: ℎ = 𝑂 1 , 𝑟 = 𝑂 1 , 𝑘 → ∞.

Random choice needs a field of size at least: Ω 𝑘ℎ−1 .

Explicit maximally recoverable codes

Theorem[GHJY]: There exist maximally recoverable (r,h)-LRC over a field of size

𝑐𝑘
ℎ−1 1−

1
2𝑟 .

Comparison:

• Our alphabet grows as 𝑂 𝑘ℎ−1 or slower.

• Beats random codes for small h and large h.

• Our only lower bound for the alphabet size thus far is k+1 independent of h.

Code construction

We use dual constraints to specify the code.

𝒙𝟏 𝒙𝟐 … 𝒙𝒓 𝑳𝟏 … 𝒙𝒌−𝒓 𝒙𝒌−𝒓+𝟏 … 𝒙𝒌 𝑳𝒌/𝒓 𝑯𝟏 𝑯𝟐 … 𝑯𝒉

1 1 … 1 1

1 1 … 1 1

𝑘

𝑟

h

𝛼𝑖𝑗

𝛼𝑖𝑗
2

…

𝛼𝑖𝑗
2ℎ−1

Element 𝛼𝑖𝑗 appears in the j-th column of the i-th group.

We consider a sequence field extensions 𝐹2 ⊆ 𝐹2𝑎 ⊆ 𝐹2𝑏.

{𝜉𝑗} ⊆ 𝐹2𝑎 form a basis over 𝐹2.

{𝜆𝑖} ⊆ 𝐹2𝑏 are ℎ-independent over 𝐹2𝑎.

𝛼𝑖𝑗=𝜉𝑗 × 𝜆𝑖.

𝑘

𝑟
+ 1 local groups.

Erasure correction
k=8, r=4, h=2.

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝑳𝟏 𝒙𝟓 𝒙𝟔 𝒙𝟕 𝒙𝟖 𝑳𝟐 𝑯𝟏 𝑯𝟐 𝑯𝟑

1 1 1 1 1

1 1 1 1 1

𝛼11 𝛼12 𝛼21 𝛼22 𝛼31

𝛼11
2 𝛼12

2 𝛼21
2 𝛼22

2 𝛼31
2

𝛼11
4 𝛼12

4 𝛼21
4 𝛼22

4 𝛼31
4

1 1

1 1

𝛼11 𝛼12 𝛼21 𝛼22 𝛼31

𝛼11
2 𝛼12

2 𝛼21
2 𝛼22

2 𝛼31
2

𝛼11
4 𝛼12

4 𝛼21
4 𝛼22

4 𝛼31
4

𝛼11+𝛼12 𝛼21+𝛼22 𝛼31

𝛼11
2 +𝛼12

2 𝛼21
2 +𝛼22

2 𝛼31
2

𝛼11
4 +𝛼12

4 𝛼21
4 +𝛼22

4 𝛼31
4

(𝛼11+𝛼12) (𝛼21+𝛼22) 𝛼31

(𝛼11+𝛼12)
2 (𝛼21+𝛼22)2 𝛼31

2

(𝛼11+𝛼12)
4 (𝛼21+𝛼22)4 𝛼31

4

(𝛼11+𝛼12) (𝛼21+𝛼22) 𝛼31 (𝜉1 + 𝜉2) × 𝜆1 (𝜉1 + 𝜉2) × 𝜆2 𝜉1 × 𝜆3

Looking forward

The main challenge in LRC design is to obtain maximally reliable codes over small finite
fields. Empirical evidence suggests that there is a tradeoff between reliability and
computational efficiency.

Open questions:

• Study the tradeoff between redundancy and locality.

• Develop tight bounds for redundancy when 𝑒 is a constant larger than 1.

