Some remarks on the "Short lists for short programs" problem

Marius Zimand

CCR, Moscow, September 2013

BIG Question (we'll try some answers later)

- Is randomness useful?
- Yes, sure: Game Theory, Cryptography (randomness is in the model)
- What about computational tasks? Is there a computational task that can be solved with randomness, but cannot be solved without?
(Computational task: Given an input x, find a solution y that satisfies a predicate $P(x, y)$)

Is randomness useful for computational tasks?

- Common perception: "What can be done using randomness, can also be done without, but maybe slower."
- It is now believed that $\mathrm{P}=\mathrm{BPP}$.
- If the solution of the task is unique, then we can find it by deterministic simulation.
- [de Leeuw, Moore, Shannon, Shapiro'56] If a function can be computed with probability $\alpha>0$, then it is computable.

Is randomness useful for computational tasks (2)?

- Task: Input n, Find an n-bit string x with $C(x) \geq n$.
- Not computable, but if we toss a coin n times, we get what we want.
- Task: on input x, find an extension $x y$ such that $C(x y)>C(x)$. It has the same easy solution. We toss just a few coins.
- These examples "showing" the usefulness of randomness are trivial and non-convincing.
- The non-computability of output comes directly (or almost) from non-computability of the random coins.

The really interesting questions:

Are there non-trivial tasks solvable with randomness, but not solvable without?
If YES, how little randomness is needed to solve a non-trivial task?

Back to business...

Remarks on the "short lists for short programs" problem.

- U - universal TM, $U(p)=x$, we say p is a program for x.
- $C(x)=\min \{|p| \mid p$ program for $x\}$.
- $C(x)$ - canonical example of an uncomputable function.
- Finding a shortest program for x : also uncomputable.
- U - universal TM, $U(p)=x$, we say p is a program for x.
- $C(x)=\min \{|p| \mid p$ program for $x\}$.
- $C(x)$ - canonical example of an uncomputable function.
- Finding a shortest program for x : also uncomputable.
- Question: Is it possible to compute a short list containing a short program for x ?
- U - universal TM, $U(p)=x$, we say p is a program for x.
- $C(x)=\min \{|p| \mid p$ program for $x\}$.
- $C(x)$ - canonical example of an uncomputable function.
- Finding a shortest program for x : also uncomputable.
- Question: Is it possible to compute a short list containing a short program for x ?
- Question: Is it possible to compute a short list containing a short program for x in short time?
- DEFINITION. p is a c-short program for x if $U(p)=x$ and $|p| \leq C(x)+c$.
- DEFINITION. A function f is a list approximator for c-short programs if $\forall x, f(x)$ is a finite list containing a c-short program for x.

Results from [BMVZ]

- There exists a computable list approximator f for $O(1)$-short programs, with list size $O\left(n^{2}\right)$.
- For any computable list approximator for c-short programs, list size is $\Omega\left(n^{2} /(c+1)^{2}\right)$.
- There exists a poly.-time computable list approximator for $O(\log n)$-short programs, with list size poly (n).

Results from [BMVZ]

What about lists containing a shortest program?
Answer: It depends on the universal machine.

- For some U, any computable list containing a shortest program for x has size $2^{n-O(1)}$.
- For some U, there is a computable list of size $O\left(n^{2}\right)$ containing a shortest program.

New results after [BMVZ]

[BMVZ] There exists a poly.-time list approximator for $O(\log n)$-short programs, with list size poly (n).
[BMVZ] There exists a computable list approximator for $O(1)$-short programs, with list size $O\left(n^{2}\right)$.
[Teutsch] There exists a poly.-time computable list approximator for $O(\log n)$ $O(1)$-short programs, with list size poly (n) See also [7]: Short lists with short programs in short time - a short proof. [Z] There exists a randomized computable list approximator for $O(1) O(\log n)$ -short programs, with list size $n^{2} n$.

Lower Bounds: The parameters are essentially optimal.
[Z] There exists a randomized poly.-time approximator for $O\left(\log ^{2} n\right)$-short programs with list size n

New results after [BMVZ]

```
[BMVZ] There exists a poly.-time list approximator for O(\operatorname{log}n)\mathrm{ -short programs,}
with list size poly(n).
[BMVZ] There exists a computable list approximator for O(1)-short programs,
with list size O( n
```

[Teutsch] There exists a poly.-time computable list approximator for $O(\log n)$ $O(1)$-short programs, with list size poly (n).
See also [Z]: Short lists with short programs in short time - a short proof.
[Z] There exists a randomized computable list approximator for $O(1) O(\log n)$ -short programs, with list size $n^{2} n$.

Lower Bounds: The parameters are essentially optimal.
[Z] There exists a randomized poly.-time approximator for $O\left(\log ^{2} n\right)$-short programs with list size n

New results after [BMVZ]

```
[BMVZ] There exists a poly.-time list approximator for O(\operatorname{log}n)\mathrm{ -short programs,}
with list size poly(n).
[BMVZ] There exists a computable list approximator for O(1)-short programs,
with list size O( n
[Teutsch] There exists a poly.-time computable list approximator for O(log n)
O(1) -short programs, with list size poly(n)
See also [Z]: Short lists with short programs in short time - a short proof.
```

[Z] There exists a randomized computable list approximator for $O(1) O(\log n)$ -short programs, with list size $n^{2} n$.

Lower Bounds: The parameters are essentially optimal.
[Z] There exists a randomized poly.-time approximator for $O\left(\log ^{2} n\right)$-short programs with list size n

Theorem

There exists an algorithm that Input: $x \in\{0,1\}^{n}, k \in \mathbf{N}, \delta>0$
Output: list of size poly (n / δ), each element of length $k+O(\log (n / \delta))$ If $k=C(x)$ then $(1-\delta)$ of the elements are programs for x.

Theorem

There exists an algorithm that Input: $x \in\{0,1\}^{n}, k \in \mathbf{N}, \delta>0$
Output: list of size poly (n / δ), each element of length $k+O(\log (n / \delta))$ If $k=C(x)$ then $(1-\delta)$ of the elements are programs for x.

Theorem

There exists a poly-time algorithm that
Input: $x \in\{0,1\}^{n}, k \in \mathbf{N}, \delta>0$
Output: list of size $2^{\log ^{2}(n / \delta)}$, each element of length $k+O\left(\log ^{2}(n / \delta)\right)$ If $k=C(x)$ then $(1-\delta)$ of the elements are programs for x. (each element of the list printed in poly time).

Theorem

There exists an algorithm that Input: $x \in\{0,1\}^{n}, k \in \mathbf{N}, \delta>0$
Output: list of size poly (n / δ), each element of length $k+O(\log (n / \delta))$ If $k=C(x)$ then $(1-\delta)$ of the elements are programs for x.

Theorem

There exists a poly-time algorithm that
Input: $x \in\{0,1\}^{n}, k \in \mathbf{N}, \delta>0$
Output: list of size $2^{\log ^{2}(n / \delta)}$, each element of length $k+O\left(\log ^{2}(n / \delta)\right)$ If $k=C(x)$ then $(1-\delta)$ of the elements are programs for x. (each element of the list printed in poly time).

From here we get the n-sized list containing a short program for x with prob. $(1-\delta)$:
Run the algorithm for each $k=1,2, \ldots, n$ and pick one random element from each list.

Key tool: bipartite graphs $G=(L, R, E \subseteq L \times R)$ with the rich owner property:
For any $B \subseteq L$ of size $|B| \approx K$, most x in B own most of their neighbors (these neighbors are not shared with any other node from B).

- $x \in B$ owns $y \in N(x)$ w.r.t. B if $N(y) \cap B=\{x\}$.
- $x \in B$ is a rich owner if x owns $(1-\delta)$ of its neighbors w.r.t. B.
- $G=(L, R, E \subseteq L \times R)$ has the (K, a, δ)-rich owner property if for all B with $K \leq|B| \leq a \cdot K,(1-\delta)$ of the elements of B are rich owners w.r.t. B.

Theorem

There exists a computable (uniformly in n) graph with the rich owner property for $\left(2^{k}, a=O(1), \delta\right)$ with:

- $L=\{0,1\}^{n}$
- $R=\{0,1\}^{k+O(\log (n / \delta)}$
- $D($ left degree $)=\operatorname{poly}(n / \delta)$

Similar for poly-time G but overhead for R is $O\left(\log ^{2}(n / \delta)\right)$ and $D=2^{O\left(\log ^{2}(n / \delta)\right)}$.

We obtain our lists:

- List for $x: N(x)$
- Any $p \in N(x)$ owned by x w.r.t. $B=\left\{x^{\prime} \mid C\left(x^{\prime}\right) \leq k\right\}$ is a program for x.

How to construct x from p : Enumerate B till we find an element that owns p. This is x.

Building graphs with the rich owner property

- Step 1: most neighbors of x are shared with only poly (n) many other nodes.
- Step 2: most most neighbors of x are shared with no other nodes.

Step 1 is done with extractors that have small entropy loss.
Step 2 is done by hashing.

extractors

$E:\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ is a (k, ϵ)-extractor if for any $B \subseteq\{0,1\}^{n}$ of size $|B| \geq 2^{k}$ and X unif. distrib in B, and for any $A \subseteq\{0,1\}^{m}$,

$$
\left|\operatorname{Prob}\left(E\left(X, U_{d}\right) \in A\right)-\operatorname{Prob}(A)\right| \leq \epsilon,
$$

or in other words

$$
\left|\frac{|E(B, A)|}{2^{k} \cdot 2^{d}}-\frac{|A|}{2^{m}}\right| \leq \epsilon
$$

The entropy loss is $s=k+d-m$.

Step 1

GOAL : $\forall B \subseteq L$ with $|B| \approx K$, most nodes in B share most of their neighbors with only poly (n) other nodes from B.

We can view an extractor E as a bipartite graph G_{E} with $L=\{0,1\}^{n}, R=\{0,1\}^{m}$ and left-degree $D=2^{d}$.

If E is a (k, ϵ)-extractor, then for any $B \subseteq L$ of size $|B| \approx 2^{k}$:
most $x \in B$ share most of their neighbors with only $O\left(1 / \epsilon \cdot 2^{s}\right)$ other nodes in B.
By the probabilistic method: There are extractors whith entropy loss $s=O(\log (1 / \epsilon))$ and log-left degree $d=O(\log n / \epsilon)$.
[Guruswami, Umans, Vadhan, 2009] Poly-time extractors with entropy loss $s=O(\log (1 / \epsilon))$ and log-left degree $d=O\left(\log ^{2} n / \epsilon\right)$.

So for $1 / \epsilon=\operatorname{poly}(n)$, we get our GOAL.

Step 2

GOAL: Reduce sharing most neighbors with poly (n) other nodes, to sharing them with no other nodes.

Let $x_{1}, x_{2}, \ldots, x_{\text {poly }(n)}$ be n-bit strings.
Consider p_{1}, \ldots, p_{T} the first T prime numbers, where $T=(1 / \delta) \cdot n \cdot \operatorname{poly}(n)$.
For every x_{i}, for $(1-\delta)$ of the T prime numbers, $\left(x_{i} \bmod p\right)$ is unique in $\left(x_{1} \bmod p, \ldots, x_{\text {poly }(n)} \bmod p\right)$.
In this way, by "splitting" each edge into T new edges we reach our GOAL.
Cost: overhead of $O(\log n)$ to the right nodes and the left degree increases by a factor of $T=\operatorname{poly}(n)$,

Lower bounds

parameters of interest:

- $T=$ size of the list
- $r=$ number of random bits
- $c=\mid$ short program $|-|$ shortest program \mid.

Main result: $T=n, r=O(\log n), c=O(\log n)$.
Lower bounds: essentially, no parameter can be reduced while conserving the other two.

lower bound on r

- $T=$ size of the list
- $r=$ number of random bits
- $c=\mid$ short program $|-|$ shortest program \mid.

If $T=n$ and $c=O(\log n)$, then $r>\log n-O(\log \log n)$.
Proof. If r would be smaller, we would deterministically get a list of size $<n^{2} / c^{2}$, contradicting the lower bound [BMVZ]

lower bound on r

- $T=$ size of the list
- $r=$ number of random bits
- $c=\mid$ short program $|-|$ shortest program \mid

If $T=n$ and $c=O(\log n)$, then $r>\log n-O(\log \log n)$.
Proof. If r would be smaller, we would deterministically get a list of size $<n^{2} / c^{2}$, contradicting the lower bound [BMVZ].

lower bound on c

- $T=$ size of the list
- $r=$ number of random bits
- $c=\mid$ short program $|-|$ shortest program \mid.

$$
\text { If } T=n \text {, then } c=O(\log n) \text {. }
$$

Proof (by Bruno Bauwens)
$L_{n}=$ list when randomness is ρ
$\mathcal{P}=$ set of c-short programs for $x . \ell=|\mathcal{P}|=O\left(2^{c}\right)$.

- At least half of the lists $L_{\rho}, \rho \in\{0,1\}^{r}$ contain an element of \mathcal{P}
- So some element of \mathcal{P} appears in $1 / 2 \ell$ of the lists.
- For each $m=1,2, \ldots, n$, select strings of length between m and $m+c$ appearing in $1 / 2 \ell$ of the lists. A c-short program will be here.
- Let s_{m} be the number of elements selected at iteration m. The elements selected at iteration m occur at least $s_{m} \cdot \frac{2^{r}}{2 \ell}$ times.
- So

$$
2^{r} \cdot T \geq s_{1} \cdot \frac{2^{r}}{2 \ell}+s_{2} \cdot \frac{2^{r}}{2 \ell}+\ldots+s_{n} \cdot \frac{2^{r}}{2 \ell}
$$

-So, $s_{1}+s_{2}+\ldots+s_{n} \leq T \cdot 2 \ell$.

- By [BMVZ] lower bound, the to nal number of selected elements is $\Omega\left(n^{2} / c^{2}\right)$
- So $T \cdot 2 \ell=\Omega\left(n^{2} / c^{2}\right)$, and the conclusion follows.

lower bound on c

- $T=$ size of the list
- $r=$ number of randon bits
- $c=\mid$ short program $|-|$ shortest program

If $T=n$, then $c=O(\log n)$.
Proof (by Bruno Bauwens)
$L_{\rho}=$ list when randomness is ρ.
$\mathcal{P}=$ set of c-short programs for $x . \ell=|\mathcal{P}|=O\left(2^{c}\right)$.

- At least half of the lists $L_{\rho}, \rho \in\{0,1\}^{r}$ contain an element of \mathcal{P}.
- So some element of \mathcal{P} appears in $1 / 2 \ell$ of the lists.
- For each $m=1,2, \ldots, n$, select strings of length between m and $m+c$ appearing in $1 / 2 \ell$ of the lists. A c-short program will be here.
- Let s_{m} be the number of elements selected at iteration m. The elements selected at
iteration m occur at least $s_{m} \cdot \frac{2^{r}}{2 \ell}$ times.
- So
- By [BMVZ] lower bound, the total number of selected elements is $\Omega\left(n^{2} / c^{2}\right)$
- So $T \cdot 2 \ell=\Omega\left(n^{2} / c^{2}\right)$, and the conclusion follows.

lower bound on c

- $T=$ size of the list
- $r=$ number of random bits
- $c=\mid$ short program $|-|$ shortest program \mid

If $T=n$, then $c=O(\log n)$.
Proof (by Bruno Bauwens)
$I_{\rho}=$ list when randomness is p
$\mathcal{P}=$ set of c-short programs for $x . \ell=|\mathcal{P}|=O\left(2^{c}\right)$

- At least half of the lists $L_{\rho}, \rho \in\{0,1\}^{r}$ contain an element of \mathcal{P}
- So some element of \mathcal{P} appears in $1 / 2 \ell$ of the lists.
- For each $m=1,2, \ldots, n$, select strings of length between m and $m+c$ appearing in
$1 / 2 \ell$ of the lists. A c-short program will be here.
- Let s_{m} be the number of elements selected at iteration m. The elements selected at iteration m occur at least $s_{m} \cdot \frac{2^{r}}{2 \ell}$ times.
- So

$$
2^{r} \cdot T \geq s_{1} \cdot \frac{2^{r}}{2 \ell}+s_{2} \cdot \frac{2^{r}}{2 \ell}+\ldots+s_{n} \cdot \frac{2^{r}}{2 \ell} .
$$

\bullet So, $s_{1}+s_{2}+\ldots+s_{n} \leq T \cdot 2 \ell$.

- By [BMVZ] lower bound, the total number of selected elements is $\Omega\left(n^{2} / c^{2}\right)$
- So $T \cdot 2 \ell=\Omega\left(n^{2} / c^{2}\right)$, and the conclusion follows.

lower bound on T

- $T=$ size of the list
- $r=$ number of random bits
- $c=\mid$ short program $|-|$ shortest program \mid.

$$
T=\Omega(n / c) .
$$

Proof. If T were smaller, we could obtain a list of lengths of sublinear size

 containing $C(x)$. Contradicts lower bound from [Beigel et al. , 2006].
lower bound on T

- $T=$ size of the list
- $r=$ number of random bits
- $c=\mid$ short program $|-|$ shortest program \mid
$T=\Omega(n / c)$.
Proof. If T were smaller, we could obtain a list of lengths of sublinear size containing $C(x)$. Contradicts lower bound from [Beigel et al. , 2006].

Back to our BIG QUESTIONS

Are there non-trivial tasks solvable with randomness, but not solvable without?

If YES, how little randomness is needed to solve a non-trivial task?

Back to our BIG QUESTIONS

Are there non-trivial tasks solvable with randomness, but not solvable without?

If YES, how little randomness is needed to solve a non-trivial task?
Task: Given $x \in\{0,1\}^{n}$ compute a list of n elements that contains an $(O \log n)$-short program for x.

The task is not solvable deterministically (recall the $\Omega\left(n^{2} / c^{2}\right)$ lower bound for c-short programs [BMVZ]).

The task can be done probabilistically, with prob. error δ.
The number of random bits is $O(\log n / \delta)$.
The similar task for $\left(O \log ^{2} n\right)$-short program for x can be solved in probabilistic polynomial time with $O\left(\log ^{2} n\right)$ random bits.

Open Question

Are there non-trivial task that can be solved with $o(\log n)$ random bits, but cannot be solved deterministically?

Task: Defined by a predicate P. Given x find a "solution" y such that $P(x, y)$ is true.

The task is trivial if for some very simple function $g, g(x, r)$ is a solution for most r
"very simple function": projection + permutation (or maybe $N C_{0}$).

Thank you.

