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Intro

BIG Question (we’ll try some answers later)

Is randomness useful?

Yes, sure: Game Theory, Cryptography (randomness is in the model)

What about computational tasks? Is there a computational task that can be
solved with randomness, but cannot be solved without?

(Computational task: Given an input x , find a solution y that satisfies a
predicate P(x , y))
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Intro

Is randomness useful for computational tasks?

Common perception: “What can be done using randomness, can also be
done without, but maybe slower.”

It is now believed that P = BPP.

If the solution of the task is unique, then we can find it by deterministic
simulation.

[de Leeuw, Moore, Shannon, Shapiro’56] If a function can be computed
with probability α > 0, then it is computable.
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Intro

Is randomness useful for computational tasks (2)?

Task: Input n, Find an n-bit string x with C (x) ≥ n.

Not computable, but if we toss a coin n times, we get what we want.

Task: on input x , find an extension xy such that C (xy) > C (x). It has the
same easy solution. We toss just a few coins.

These examples “showing” the usefulness of randomness are trivial and
non-convincing.

The non-computability of output comes directly (or almost) from
non-computability of the random coins.
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Intro

The really interesting questions:

Are there non-trivial tasks solvable with randomness, but not solvable without?

If YES, how little randomness is needed to solve a non-trivial task?
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Intro

Back to business...

Remarks on the “short lists for short programs” problem.
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Intro

U - universal TM, U(p) = x , we say p is a program for x .

C (x) = min{|p| | p program for x}.
C (x) - canonical example of an uncomputable function.

Finding a shortest program for x : also uncomputable.

Question: Is it possible to compute a short list containing a short program
for x?

Question: Is it possible to compute a short list containing a short program
for x in short time?
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Intro

DEFINITION. p is a c-short program for x if U(p) = x and |p| ≤ C (x) + c .

DEFINITION. A function f is a list approximator for c-short programs if
∀x , f (x) is a finite list containing a c-short program for x .
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Intro

Results from [BMVZ]

There exists a computable list approximator f for O(1)-short programs, with
list size O(n2).

For any computable list approximator for c-short programs, list size is
Ω(n2/(c + 1)2).

There exists a poly.-time computable list approximator for O(log n)-short
programs, with list size poly(n).
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Intro

Results from [BMVZ]

What about lists containing a shortest program?
Answer: It depends on the universal machine.

For some U, any computable list containing a shortest program for x has size
2n−O(1).

For some U, there is a computable list of size O(n2) containing a shortest
program.
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Intro

New results after [BMVZ]

[BMVZ] There exists a poly.-time list approximator for O(log n)-short programs,
with list size poly(n).

[BMVZ] There exists a computable list approximator for O(1)-short programs,
with list size O(n2).

[Teutsch] There exists a poly.-time computable list approximator for O(log n)
O(1) -short programs, with list size poly(n).

See also [Z]: Short lists with short programs in short time - a short proof.

[Z] There exists a randomized computable list approximator for O(1) O(log n)
-short programs, with list size n2 n.

Lower Bounds: The parameters are essentially optimal.

[Z] There exists a randomized poly.-time approximator for O(log2 n)-short
programs with list size n
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Intro

Theorem

There exists an algorithm that
Input: x ∈ {0, 1}n, k ∈ N, δ > 0
Output: list of size poly(n/δ), each element of length k + O(log(n/δ))

If k = C (x) then (1− δ) of the elements are programs for x.

Theorem

There exists a poly-time algorithm that
Input: x ∈ {0, 1}n, k ∈ N, δ > 0

Output: list of size 2log2(n/δ), each element of length k + O(log2(n/δ))
If k = C (x) then (1− δ) of the elements are programs for x.

(each element of the list printed in poly time).

From here we get the n-sized list containing a short program for x with prob.
(1− δ):
Run the algorithm for each k = 1, 2, . . . , n and pick one random element from
each list.
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Intro

Key tool: bipartite graphs G = (L,R,E ⊆ L× R) with the rich owner property:

For any B ⊆ L of size |B| ≈ K , most x in B own most of their neighbors (these
neighbors are not shared with any other node from B).

Marius Zimand Remarks on “Short lists...” 2013 13 / 26



Intro

• x ∈ B owns y ∈ N(x) w.r.t. B if N(y) ∩ B = {x}.

• x ∈ B is a rich owner if x owns (1− δ) of its neighbors w.r.t. B.

• G = (L,R,E ⊆ L× R) has the (K , a, δ)-rich owner property if
for all B with K ≤ |B| ≤ a · K , (1− δ) of the elements of B are rich owners w.r.t.
B.
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Intro

Theorem

There exists a computable (uniformly in n) graph with the rich owner property for
(2k , a = O(1), δ) with:
• L = {0, 1}n
• R = {0, 1}k+O(log(n/δ)

• D(left degree) = poly(n/δ)

Similar for poly-time G but overhead for R is O(log2(n/δ)) and D = 2O(log2(n/δ)).

We obtain our lists:
• List for x : N(x)
• Any p ∈ N(x) owned by x w.r.t. B = {x ′ | C(x ′) ≤ k} is a program for x .

How to construct x from p: Enumerate B till we find an element that owns p. This is x .
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Intro

Building graphs with the rich owner property

• Step 1: most neighbors of x are shared with only poly(n) many other nodes.

• Step 2: most most neighbors of x are shared with no other nodes.

Step 1 is done with extractors that have small entropy loss.

Step 2 is done by hashing.
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Intro

extractors

E : {0, 1}n × {0, 1}d → {0, 1}m is a (k , ε)-extractor if for any B ⊆ {0, 1}n of size
|B| ≥ 2k and X unif. distrib in B, and for any A ⊆ {0, 1}m,

|Prob(E (X ,Ud) ∈ A)− Prob(A)| ≤ ε,

or in other words ∣∣∣∣ |E (B,A)|
2k · 2d

− |A|
2m

∣∣ ≤ ε
The entropy loss is s = k + d −m.
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Intro

Step 1

GOAL : ∀B ⊆ L with |B| ≈ K , most nodes in B share most of their
neighbors with only poly(n) other nodes from B.

We can view an extractor E as a bipartite graph GE with L = {0, 1}n,R = {0, 1}m
and left-degree D = 2d .

If E is a (k , ε)-extractor, then for any B ⊆ L of size |B| ≈ 2k :

most x ∈ B share most of their neighbors with only O(1/ε · 2s) other nodes in B.

By the probabilistic method: There are extractors whith entropy loss
s = O(log(1/ε)) and log-left degree d = O(log n/ε).

[Guruswami, Umans, Vadhan, 2009] Poly-time extractors with entropy loss
s = O(log(1/ε)) and log-left degree d = O(log2 n/ε).

So for 1/ε = poly(n), we get our GOAL.
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Intro

Step 2

GOAL: Reduce sharing most neighbors with poly(n) other nodes, to sharing
them with no other nodes.

Let x1, x2, . . . , xpoly(n) be n-bit strings.

Consider p1, . . . , pT the first T prime numbers, where T = (1/δ) · n · poly(n).

For every xi , for (1− δ) of the T prime numbers, (xi mod p) is unique in
(x1 mod p, . . . , xpoly(n) mod p).

In this way, by ”splitting” each edge into T new edges we reach our GOAL.

Cost: overhead of O(log n) to the right nodes and the left degree increases by a
factor of T = poly(n), .
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Intro

Lower bounds

parameters of interest:

• T = size of the list
• r = number of random bits
• c = |short program| − |shortest program|.

Main result: T = n, r = O(log n), c = O(log n).

Lower bounds: essentially, no parameter can be reduced while conserving the
other two.
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Intro

lower bound on r

• T = size of the list
• r = number of random bits

• c = |short program| − |shortest program|.

If T = n and c = O(log n), then r > log n − O(log log n).

Proof. If r would be smaller, we would deterministically get a list of size < n2/c2,
contradicting the lower bound [BMVZ].
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Intro

lower bound on c
• T = size of the list
• r = number of random bits

• c = |short program| − |shortest program|.

If T = n, then c = O(log n).

Proof (by Bruno Bauwens)

Lρ = list when randomness is ρ.
P = set of c-short programs for x . ` = |P| = O(2c).
• At least half of the lists Lρ, ρ ∈ {0, 1}r contain an element of P.
• So some element of P appears in 1/2` of the lists.
• For each m = 1, 2, . . . , n, select strings of length between m and m + c appearing in
1/2` of the lists. A c-short program will be here.
• Let sm be the number of elements selected at iteration m. The elements selected at
iteration m occur at least sm · 2

r

2`
times.

• So

2r · T ≥ s1 ·
2r

2`
+ s2 ·

2r

2`
+ . . .+ sn ·

2r

2`
.

•So, s1 + s2 + . . .+ sn ≤ T · 2`.
• By [BMVZ] lower bound, the total number of selected elements is Ω(n2/c2)
• So T · 2` = Ω(n2/c2), and the conclusion follows.
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Intro

lower bound on T

• T = size of the list
• r = number of random bits

• c = |short program| − |shortest program|.

T = Ω(n/c).

Proof. If T were smaller, we could obtain a list of lengths of sublinear size
containing C (x). Contradicts lower bound from [Beigel et al. , 2006].
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Intro

Back to our BIG QUESTIONS

Are there non-trivial tasks solvable with randomness, but not solvable without?

If YES, how little randomness is needed to solve a non-trivial task?

Task: Given x ∈ {0, 1}n compute a list of n elements that contains an
(O log n)-short program for x .

The task is not solvable deterministically (recall the Ω(n2/c2) lower bound for
c-short programs [BMVZ]).

The task can be done probabilistically, with prob. error δ.

The number of random bits is O(log n/δ).

The similar task for (O log2 n)-short program for x can be solved in probabilistic
polynomial time with O(log2 n) random bits.
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Intro

Open Question

Are there non-trivial task that can be solved with o(log n) random bits, but
cannot be solved deterministically?

Task: Defined by a predicate P. Given x find a “solution” y such that P(x , y) is
true.

The task is trivial if for some very simple function g , g(x , r) is a solution for most
r

”very simple function”: projection + permutation (or maybe NC0).
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Intro

Thank you.
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