The Kolmogorov complexity of on-line predicting odd and even bits

Bruno Bauwens

Université de Lorraine, LORIA

26/9/2013 CCR Moscow
1 Introduction

2 Definitions and results

3 Application

4 Proof
Studying a theater play

play = 2 independent monologues \(x, y \)

- Someone studies \(x \) and \(y \).
- Alice studies \(x \), Bob studies \(y \).

\[\text{Script} \]

Alice

To be or not to be, …

…

Bob

Once upon a time

…

\sim The end \sim
play = 2 independent monologues x, y

- Someone studies x and y.
- Alice studies x, Bob studies y.

\[\text{Script} \]

Alice
To be or not to be,
...

Bob
Once upon a time
...

~ The end ~
Studying a theater play

play = 2 independent monologues x, y

- Someone studies x and y.
- Alice studies x, Bob studies y.

\[\text{Script} \]

Alice

To be or not to be,
\[\ldots \]

Bob

Once upon a time
\[\ldots \]

\[\sim \text{The end} \sim \]
Studying a theater play

play = 2 independent monologues x, y

- Someone studies x and y.
- Alice studies x, Bob studies y.

Intuitively: total studying effort remains the same.

Script

Alice To be or not to be,
 ...

Bob Once upon a time
 ...

~ The end ~
Studying a theater play

Play = large dialogue, alternating lines
- Someone studies everything,
- Alice studies odd and Bob even lines.

Script

Alice: I love you
Bob: I love you too
Alice: I no longer love you
Bob: I’m sad

...

Alice: Blabra
Bob: Blabra

~ The end ~
Studying a theater play

Play = large dialogue, alternating lines
- Someone studies everything,
- Alice studies odd and Bob even lines.

<table>
<thead>
<tr>
<th>Alice</th>
<th>I love you</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>I love you too</td>
</tr>
<tr>
<td>Alice</td>
<td>I no longer love you</td>
</tr>
<tr>
<td>Bob</td>
<td>I’m sad</td>
</tr>
</tbody>
</table>

...

Alice Blabla
Bob Blabla

~ The end ~
Studying a theater play

Play = large dialogue, alternating lines
 - Someone studies everything,
 - Alice studies odd and Bob even lines.
Only remember lines with help of last other lines.

Script

Alice	I love you
Bob	I love you too
Alice	I no longer love you
Bob	I’m sad

...

Alice | Blabla |
Bob | Blabla |

~ The end ~
Studying a theater play

Play = large dialogue, alternating lines
- Someone studies everything,
- Alice studies odd and Bob even lines.

Only remember lines with help of last other lines.
Intuitively: total studying effort is the same?

Script

Alice I love you
Bob I love you too
Alice I no longer love you
Bob I’m sad

...

Alice Blabla
Bob Blabla

~ The end ~
Shannon entropy: perfect symmetry of information

Splitting information “in pieces” does not increase the sum of parts of information.

\[H(X, Y) = H(X) + H(Y|X) \quad [\equiv H(Y) + H(X|Y)] \]
Shannon entropy: perfect symmetry of information

Splitting information “in pieces” does not increase the sum of parts of information.

\[H(X, Y) = H(X) + H(Y|X) \quad [= H(Y) + H(X|Y)] \]

By recursion, for any number of “pieces”

\[H(X_1 Y_1 \cdots X_n Y_n) = \sum_n H(X_{n+1}|X_1 Y_1 \cdots X_n Y_n) + \sum_n H(Y_{n+1}|X_1 Y_1 \cdots X_{n+1}) \]
Shannon entropy: perfect symmetry of information

Splitting information “in pieces” does not increase the sum of parts of information.

\[H(X, Y) = H(X) + H(Y|X) \quad [= H(Y) + H(X|Y)] \]

By recursion, for any number of “pieces”

\[H(X_1 Y_1 \cdots X_n Y_n) = \sum_n H(X_{n+1}|X_1 Y_1 \cdots X_n Y_n) + \sum_n H(Y_{n+1}|X_1 Y_1 \cdots X_{n+1}) \]
Splitting in two parts increases the sum by at most $O(\log |x|)$

$$C(x, y) = C(x) + C(y|x) + O(\log |x|).$$

- Sums are not machine invariant up to $O(1)$.
- We refine to $C_{\text{odd}}(x)$ and $C_{\text{ev}}(x)$ [see further]
- Main result: $C_{\text{odd}}(x) + C_{\text{ev}}(x) \approx 2C(x)$ for infinitely many x.
 \rightarrow Confirming our example.
Splitting in two parts increases the sum by at most $O(\log |x|)$

$$C(x, y) = C(x) + C(y|x) + O(\log |x|).$$

By recursion, for n “pieces” an excess $O(n)$

$$C(x_1y_1 \cdots x_ny_n) = \sum_n O(1) + C(x_{n+1}|x_1y_1 \cdots x_ny_n) + \sum_n O(1) + C(y_{n+1}|x_1y_1 \cdots x_{n+1})$$

$$= C_{\text{odd}}(x) + C_{\text{ev}}(x) + ??$$

- Sums are not machine invariant up to $O(1)$.
- We refine to $C_{\text{odd}}(x)$ and $C_{\text{ev}}(x)$ [see further]
- Main result: $C_{\text{odd}}(x) + C_{\text{ev}}(x) \approx 2C(x)$ for infinitely many x.
 → Confirming our example.
Splitting in two parts increases the sum by at most $O(\log |x|)$

$$C(x, y) = C(x) + C(y|x) + O(\log |x|).$$

By recursion, for n “pieces” an excess $O(n)$

$$C(x_1y_1 \cdots x_ny_n) = \sum_n O(1) + C(x_{n+1}|x_1y_1 \cdots x_ny_n) + \sum_n O(1) + C(y_{n+1}|x_1y_1 \cdots x_{n+1})
= C_{\text{odd}}(x) + C_{\text{ev}}(x) + \text{?}$$

Sums are not machine invariant up to $O(1)$.
- We refine to $C_{\text{odd}}(x)$ and $C_{\text{ev}}(x)$ [see further]
- Main result: $C_{\text{odd}}(x) + C_{\text{ev}}(x) \approx 2C(x)$ for infinitely many x.
 \rightarrow Confirming our example.
Kolmogorov complexity: almost symmetry of information

Splitting in two parts increases the sum by at most $O(\log |x|)$

$$C(x, y) = C(x) + C(y|x) + O(\log |x|).$$

By recursion, for n “pieces” an excess $O(n)$

$$C(x_1y_1 \cdots x_ny_n) = \sum_{n} O(1) + C(x_{n+1}|x_1y_1 \cdots x_ny_n) + \sum_{n} O(1) + C(y_{n+1}|x_1y_1 \cdots x_{n+1})$$

$$= C_{\text{odd}}(x) + C_{\text{ev}}(x) + ??$$

- Sums are not machine invariant up to $O(1)$.
- We refine to $C_{\text{odd}}(x)$ and $C_{\text{ev}}(x)$ [see further]
- Main result: $C_{\text{odd}}(x) + C_{\text{ev}}(x) \approx 2C(x)$ for infinitely many x. → Confirming our example.
Splitting in two parts increases the sum by at most $O(\log |x|)$

\[C(x, y) = C(x) + C(y|x) + O(\log |x|). \]

By recursion, for n “pieces” an excess $O(n)$

\[
C(x_1 y_1 \cdots x_n y_n) = \sum_n O(1) + C(x_{n+1}|x_1 y_1 \cdots x_n y_n) + \sum_n O(1) + C(y_{n+1}|x_1 y_1 \cdots x_{n+1})
\]

\[= C_{\text{odd}}(x) + C_{\text{ev}}(x) + ?? \]

Sums are not machine invariant up to $O(1)$.

We refine to $C_{\text{odd}}(x)$ and $C_{\text{ev}}(x)$ [see further]

Main result: $C_{\text{odd}}(x) + C_{\text{ev}}(x) \approx 2C(x)$ for infinitely many x.

→ Confirming our example.
Outline

1 Introduction

2 Definitions and results

3 Application

4 Proof
Online Kolmogorov complexity $C_{ev}(x)$

Theorem

For every $\epsilon > 0$ there exist $\delta > 0$ and a sequence ω such that for large n

$$\frac{C_{odd}(\omega_1 \ldots \omega_{2n})}{C_{ev}(\omega_1 \ldots \omega_{2n})} \geq (1 - \epsilon)C(\omega_1 \ldots \omega_{2n}) + \delta n.$$

Moreover,

$$C_{odd}(\omega_2 \omega_1 \ldots \omega_{2n+2}) = C(\omega_1 \ldots \omega_{2n}) + O(\log n)$$

$$C_{ev}(\omega_2 \omega_1 \ldots \omega_{2n+2}) \leq O(1).$$
Online Kolmogorov complexity $C_{ev}(x)$

$C(x|y) = \min\{|p| : U(p, y) = x\}$

Theorem

For every $\varepsilon > 0$ there exist $\delta > 0$ and a sequence ω such that for large n

$$\frac{C_{odd}(\omega_1 \ldots \omega_{2n})}{C_{ev}(\omega_1 \ldots \omega_{2n})} \geq (1 - \varepsilon)C(\omega_1 \ldots \omega_{2n}) + \delta n.$$

Moreover,

$$C_{odd}(\omega_2 \omega_1 \ldots \omega_{2n} \omega_{2n-1}) = C(\omega_1 \ldots \omega_{2n}) + O(\log n)$$

$$C_{ev}(\omega_2 \omega_1 \ldots \omega_{2n} \omega_{2n-1}) \leq O(1).$$
Online Kolmogorov complexity $C_{ev}(x)$

\[C(x|y) = \min \{|p| : U(p, y) = x\} \]

Even Kolmogorov complexity $C_{ev}(x)$ is

\[\min \{|p| : U(p, x_1 \cdots x_{i-1}) = x_i, i = 2, 4, \cdots \leq |x|\} \]

Similar for C_{odd} [CSVV08].

Theorem

For every $\varepsilon > 0$ there exist $\delta > 0$ and a sequence ω such that for large n

\[C_{odd}(\omega_1 \ldots \omega_{2n}) \geq (1 - \varepsilon)C(\omega_1 \ldots \omega_{2n}) + \delta n. \]

Moreover,

\[C_{odd}(\omega_2\omega_1 \ldots \omega_{2n}\omega_{2n-1}) = C(\omega_1 \ldots \omega_{2n}) + O(\log n) \]
\[C_{ev}(\omega_2\omega_1 \ldots \omega_{2n}\omega_{2n-1}) \leq O(1). \]
Online Kolmogorov complexity $C_{ev}(x)$

Properties (ignoring $O(\log |x|)$-terms)

- $C_{ev}(x) \leq |x|/2$; $C_{ev}(x) \leq C(x)$
- $(C_{odd} + C_{ev})(x) - C(x) \leq |x|/2$
- $C(x) \leq (C_{odd} + C_{ev})(x) \leq 2C(x)$

Theorem

For every $\varepsilon > 0$ there exist $\delta > 0$ and a sequence ω such that for large n

$$
\frac{C_{odd}(\omega_1 \ldots \omega_{2n})}{C_{ev}(\omega_1 \ldots \omega_{2n})} \geq (1 - \varepsilon)C(\omega_1 \ldots \omega_{2n}) + \delta n.
$$

Moreover,

$$
C_{odd}(\omega_2 \omega_1 \ldots \omega_{2n}\omega_{2n-1}) = C(\omega_1 \ldots \omega_{2n}) + O(\log n)
$$
$$
C_{ev}(\omega_2 \omega_1 \ldots \omega_{2n}\omega_{2n-1}) \leq O(1).
$$

Even Kolmogorov complexity $C_{ev}(x)$ is

$$
C(x|y) = \min\{|p| : U(p, y) = x\}
$$

$$
C(x|y) = \min\{|p| : U(p, x_1 \cdots x_{i-1}) = x_i, i = 2, 4, \ldots \leq |x|\}
$$

Similar for C_{odd} [CSVV08].
Online Kolmogorov complexity $C_{ev}(x)$

\[C(x|y) = \min \{|p| : U(p, y) = x\} \]

Even Kolmogorov complexity $C_{ev}(x)$ is

\[
\min \{|p| : U(p, x_1 \cdots x_{i-1}) = x_i, i = 2, 4, \cdots \leq |x|\}
\]

Similar for C_{odd} [CSVV08].

Properties (ignoring $O(\log |x|)$-terms)

- $C_{ev}(x) \leq |x|/2$; $C_{ev}(x) \leq C(x)$
- $(C_{odd} + C_{ev})(x) - C(x) \leq |x|/2$
- $C(x) \leq (C_{odd} + C_{ev})(x) \leq 2C(x)$

Theorem

For every $\varepsilon > 0$ there exist $\delta > 0$ and a sequence ω such that for large n

\[
\frac{C_{odd}(\omega_1 \cdots \omega_{2n})}{C_{ev}(\omega_1 \cdots \omega_{2n})} \geq (1 - \varepsilon)C(\omega_1 \cdots \omega_{2n}) + \delta n.
\]

Moreover,

\[
C_{odd}(\omega_2 \omega_1 \cdots \omega_{2n+1}) = C(\omega_1 \cdots \omega_{2n}) + O(\log n)
\]

\[
C_{ev}(\omega_2 \omega_1 \cdots \omega_{2n+1}) \leq O(1).
\]
Online Kolmogorov complexity $C_{ev}(x)$

\[
\tilde{U} \begin{array}{ccc}
p_1 & p_2 & p_3 \\
\end{array} \ldots
\]

\[
\begin{array}{c}
0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ \\
\end{array} \ldots
\]

$C(x|y) = \min\{|p| : U(p, y) = x\}$

Even Kolmogorov complexity $C_{ev}(x)$ is

\[
\min\{|p| : U(p, x_1 \cdots x_{i-1}) = x_i, \ i = 2, 4, \ldots \leq |x|\}
\]

Similarly for C_{odd} [CSVV08].

Properties (ignoring $O(\log |x|)$-terms)

- $C_{ev}(x) \leq |x|/2$; $C_{ev}(x) \leq C(x)$
- $(C_{odd} + C_{ev})(x) - C(x) \leq |x|/2$
- $C(x) \leq (C_{odd} + C_{ev})(x) \leq 2C(x)$

Theorem

For every $\varepsilon > 0$ there exist $\delta > 0$ and a sequence ω such that for large n

\[
\frac{C_{odd}(\omega_1 \ldots \omega_{2n})}{C_{ev}(\omega_1 \ldots \omega_{2n})} \geq (1 - \varepsilon)C(\omega_1 \ldots \omega_{2n}) + \delta n.
\]

Moreover,

\[
C_{odd}(\omega_2 \omega_1 \ldots \omega_{2n} \omega_{2n-1}) = C(\omega_1 \ldots \omega_{2n}) + O(\log n)
\]

\[
C_{ev}(\omega_2 \omega_1 \ldots \omega_{2n} \omega_{2n-1}) \leq O(1).
\]
Online Kolmogorov complexity $C_{ev}(x)$

Even Kolmogorov complexity $C_{ev}(x)$ is

$$C(x|y) = \min \{|p| : U(p, y) = x\}$$

Properties (ignoring $O(\log |x|)$-terms)

- $C_{ev}(x) \leq |x|/2$; $C_{ev}(x) \leq C(x)$
- $(C_{odd} + C_{ev})(x) - C(x) \leq |x|/2$
- $C(x) \leq (C_{odd} + C_{ev})(x) \leq 2C(x)$

Theorem

For every $\varepsilon > 0$ there exist $\delta > 0$ and a sequence ω such that for large n

$$\frac{C_{odd}(\omega_1 \ldots \omega_{2n})}{C_{ev}(\omega_1 \ldots \omega_{2n})} \geq (1 - \varepsilon)C(\omega_1 \ldots \omega_{2n}) + \delta n.$$}

Moreover,

$$C_{odd}(\omega_2 \omega_1 \ldots \omega_{2n-1}) = C(\omega_1 \ldots \omega_{2n}) + O(\log n)$$

$$C_{ev}(\omega_2 \omega_1 \ldots \omega_{2n-1}) \leq O(1).$$
Online Kolmogorov complexity $C_{ev}(x)$

\[C(x|y) = \min \{ |p| : U(p, y) = x \} \]

Even Kolmogorov complexity $C_{ev}(x)$ is

\[\min \{ |p| : U(p, x_1 \cdots x_{i-1}) = x_i, i = 2, 4, \cdots \leq |x| \} \]

Similar for C_{odd} [CSVV08].

Properties (ignoring $O(\log |x|)$-terms)

- $C_{ev}(x) \leq |x|/2; C_{ev}(x) \leq C(x)$
- $(C_{odd} + C_{ev})(x) - C(x) \leq |x|/2$
- $C(x) \leq (C_{odd} + C_{ev})(x) \leq 2C(x)$

Theorem

For every $\varepsilon > 0$ there exist $\delta > 0$ and a sequence ω such that for large n

\[
\frac{C_{odd}(\omega_1 \cdots \omega_{2n})}{C_{ev}(\omega_1 \cdots \omega_{2n})} \geq (1 - \varepsilon)C(\omega_1 \cdots \omega_{2n}) + \delta n.
\]

Moreover,

\[
C_{odd}(\omega_2 \omega_1 \cdots \omega_{2n} \omega_{2n-1}) = C(\omega_1 \cdots \omega_{2n}) + O(\log n)
\]

\[
C_{ev}(\omega_2 \omega_1 \cdots \omega_{2n} \omega_{2n-1}) \leq O(1).
\]
Online Kolmogorov complexity $C_{ev}(x)$

\[C(x|y) = \min \{|p| : U(p, y) = x \} \]

Even Kolmogorov complexity $C_{ev}(x)$ is

\[\min \{|p| : U(p, x_1 \cdots x_i-1) = x_i, i = 2, 4, \cdots \leq |x| \} \]

Similar for C_{odd} [CSVV08].

Properties (ignoring $O(\log |x|)$-terms)

- $C_{ev}(x) \leq |x|/2$; $C_{ev}(x) \leq C(x)$
- $(C_{odd} + C_{ev})(x) - C(x) \leq |x|/2$
- $C(x) \leq (C_{odd} + C_{ev})(x) \leq 2C(x)$

Theorem

For every $\varepsilon > 0$ there exist $\delta > 0$ and a sequence ω such that for large n

\[C_{odd}(\omega_1 \cdots \omega_{2n}) \geq (1 - \varepsilon)C(\omega_1 \cdots \omega_{2n}) + \delta n. \]

Moreover,

\[C_{odd}(\omega_2 \omega_1 \cdots \omega_{2n-1}) = C(\omega_1 \cdots \omega_{2n}) + O(\log n) \]
\[C_{ev}(\omega_2 \omega_1 \cdots \omega_{2n-1}) \leq O(1). \]
Theorem

For every $\varepsilon > 0$ there exist $\delta > 0$ and a sequence ω such that for large n

$$C_{\text{odd}}(\omega_1 \ldots \omega_{2n}) \geq (1 - \varepsilon)C(\omega_1 \ldots \omega_{2n}) + \delta n.$$

Moreover,

$$C_{\text{odd}}(\omega_2 \omega_1 \ldots \omega_{2n} \omega_{2n-1}) = C(\omega_1 \ldots \omega_{2n}) + O(\log n)$$

$$C_{\text{ev}}(\omega_2 \omega_1 \ldots \omega_{2n} \omega_{2n-1}) \leq O(1).$$
This implies:

\[
\limsup_{|x| \to \infty} \frac{C_{\text{odd}}(x) + C_{\text{ev}}(x)}{C(x)} = 2.
\]

Theorem

For every \(\varepsilon > 0 \) *there exist* \(\delta > 0 \) *and a sequence* \(\omega \) *such that for large* \(n \)

\[
C_{\text{odd}}(\omega_1 \ldots \omega_{2n})
\leq (1 - \varepsilon)C(\omega_1 \ldots \omega_{2n}) + \delta n.
\]

Moreover,

\[
C_{\text{odd}}(\omega_2\omega_1 \ldots \omega_{2n}\omega_{2n-1}) = C(\omega_1 \ldots \omega_{2n}) + O(\log n)
\]

\[
C_{\text{ev}}(\omega_2\omega_1 \ldots \omega_{2n}\omega_{2n-1}) \leq O(1).
\]
This implies:

\[\limsup_{|x| \to \infty} \frac{C_{\text{odd}}(x) + C_{\text{ev}}(x)}{C(x)} = 2. \]

Measure of (instantaneous) influence

\[IT(y \to x) = C(x) - C_{\text{ev}}(y_1x_1 \cdots y_nx_n) \]

\[IT(y \to x) = C(x, y) + O(1) \]

\[IT(x \to y) \leq \varepsilon C(x, y) \]

Theorem

For every \(\varepsilon > 0 \) there exist \(\delta > 0 \) and a sequence \(\omega \) such that for large \(n \)

\[\frac{C_{\text{odd}}(\omega_1 \cdots \omega_{2n})}{C_{\text{ev}}(\omega_1 \cdots \omega_{2n})} \geq (1 - \varepsilon)C(\omega_1 \cdots \omega_{2n}) + \delta n. \]

Moreover,

\[C_{\text{odd}}(\omega_2\omega_1 \cdots \omega_{2n}\omega_{2n-1}) = C(\omega_1 \cdots \omega_{2n}) + O(\log n) \]

\[C_{\text{ev}}(\omega_2\omega_1 \cdots \omega_{2n}\omega_{2n-1}) \leq O(1). \]
This implies:

$$\limsup_{|x| \to \infty} \frac{C_{\text{odd}}(x) + C_{\text{ev}}(x)}{C(x)} = 2.$$

Measure of (instantaneous) influence

$$IT(y \to x) = C(x) - C_{\text{ev}}(y_1x_1 \cdots y_nx_n)$$

$$IT(y \to x) = C(x, y) + O(1)$$

$$IT(x \to y) \leq \varepsilon C(x, y)$$

Asymmetry implies halting information

$$(C_{\text{odd}} + C_{\text{ev}})(x) - C(x) \leq (C - C^H)(x) + O(\log |x|).$$

Theorem

For every $\varepsilon > 0$ there exist $\delta > 0$ and a sequence ω such that for large n

$$\frac{C_{\text{odd}}(\omega_1 \ldots \omega_{2n})}{C_{\text{ev}}(\omega_1 \ldots \omega_{2n})} \geq (1 - \varepsilon)C(\omega_1 \ldots \omega_{2n}) + \delta n.$$

Moreover,

$$C_{\text{odd}}(\omega_2\omega_1 \ldots \omega_{2n}\omega_{2n-1}) = C(\omega_1 \ldots \omega_{2n}) + O(\log n)$$

$$C_{\text{ev}}(\omega_2\omega_1 \ldots \omega_{2n}\omega_{2n-1}) \leq O(1).$$
Generalization for more machines

\[C_{i/k} = \min \{ |p| : U(x_1 \cdots x_{j-1}) = x_j, j = i, i+k, \ldots \leq |x| \} \]

\[
\begin{array}{cccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & \ldots \\
\end{array}
\]

Theorem

For each \(k \) and \(\varepsilon > 0 \) there exist \(\delta > 0 \) and a sequence \(\omega \) such that for \(i \leq k \) and large \(n \)

\[C_{i/k}(\omega_1 \cdots \omega_{kn}) \geq \delta n + (1 - \varepsilon)C(\omega_1 \cdots \omega_{kn}) \]

\[
\limsup_{C(x) \to \infty} \frac{\sum_{i=1}^{k} C_{i/k}(x)}{C(x)} = k
\]
Generalization for more machines

\[C_{i/k} = \min \{|p| : U(x_1 \cdots x_{j-1}) = x_j, j = i, i + k, \ldots \leq |x|\} \]

\[
\begin{array}{cccccc}
\text{x}_1 & \text{x}_2 & \text{x}_3 & \text{x}_4 & \text{x}_5 & \text{x}_6 & \ldots
\end{array}
\]

Theorem

For each \(k \) and \(\varepsilon > 0 \) there exist \(\delta > 0 \) and a sequence \(\omega \) such that for \(i \leq k \) and large \(n \)

\[C_{i/k}(\omega_1 \cdots \omega_{kn}) \geq \delta n + (1 - \varepsilon)C(\omega_1 \cdots \omega_{kn}) \]

\[
\lim \sup_{C(x) \to \infty} \frac{\sum_{i=1}^{k} C_{i/k}(x)}{C(x)} = k
\]
Generalization for more machines

\[C_{i/k} = \min \{|p| : U(x_1 \cdots x_{j-1}) = x_j, j = i, i+k, \ldots \leq |x| \} \]

\[x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad \ldots \]

Theorem

*For each \(k \) and \(\varepsilon > 0 \) there exist \(\delta > 0 \) and a sequence \(\omega \) such that for \(i \leq k \) and large \(n \)

\[C_{i/k}(\omega_1 \cdots \omega_{kn}) \geq \delta n + (1 - \varepsilon)C(\omega_1 \cdots \omega_{kn}) \]

\[\limsup_{C(x) \to \infty} \frac{\sum_{i=1}^{k} C_{i/k}(x)}{C(x)} = k \]
There exist a sequence ω such that for all n

$$(C_{\text{odd}} + C_{\text{ev}} - C)(\omega_1 \ldots \omega_n) \geq n(\log \frac{4}{3})/2 - O(\log n).$$

Moreover,

$$C_{\text{odd}}(\omega_2\omega_1 \ldots \omega_{2n}\omega_{2n-1}) = C(\omega_1 \ldots \omega_{2n}) + O(\log n)$$

and

$$C_{\text{ev}}(\omega_2\omega_1 \ldots \omega_{2n}\omega_{2n-1}) \leq O(1).$$

There exist $\beta < \frac{1}{2}$ such that for large x

$$(C_{\text{ev}} + C_{\text{odd}} - C)(x) \leq \beta|x|.$$
Linear gap and upper bound

Theorem

There exist a sequence ω such that for all n

\[
(C_{\text{odd}} + C_{\text{ev}} - C)(\omega_1 \ldots \omega_n) \geq n(\log \frac{4}{3})/2 - O(\log n).
\]

Moreover,

\[
C_{\text{odd}}(\omega_2\omega_1 \ldots \omega_{2n}\omega_{2n-1}) = C(\omega_1 \ldots \omega_{2n}) + O(\log n)
\]

\[
C_{\text{ev}}(\omega_2\omega_1 \ldots \omega_{2n}\omega_{2n-1}) \leq O(1).
\]

Theorem

There exist $\beta < \frac{1}{2}$ such that for large x

\[
(C_{\text{ev}} + C_{\text{odd}} - C)(x) \leq \beta |x|.
\]
Theorem

There exist a sequence ω such that for all n

$$(C_{\text{odd}} + C_{\text{ev}} - C)(\omega_1 \ldots \omega_n) \geq n(\log \frac{4}{3})/2 - O(\log n).$$

Moreover,

$$C_{\text{odd}}(\omega_2\omega_1 \ldots \omega_{2n}\omega_{2n-1}) = C(\omega_1 \ldots \omega_{2n}) + O(\log n)$$

$$C_{\text{ev}}(\omega_2\omega_1 \ldots \omega_{2n}\omega_{2n-1}) \leq O(1).$$

Theorem

There exist $\beta < \frac{1}{2}$ such that for large x

$$(C_{\text{ev}} + C_{\text{odd}} - C)(x) \leq \beta|x|.$$
Outline

1. Introduction
2. Definitions and results
3. Application
4. Proof
Complex system
- two regions \mathcal{X} and \mathcal{Y} are interacting
- measurements in each region
 $$(x_1, y_1), (x_2, y_2), \ldots$$
- time resolution not enough to decide whether x_i is a reply to y_i or vice versa
- minimal description length: compare $C_{\text{odd}} + C_{\text{ev}}$ of
 $$x_1, y_1, x_2, y_2, \ldots$$
 and
 $$y_1, x_1, y_2, x_2, \ldots$$

Decompressors are non-computable, in practice always computable (or extensible to comp ones)
- But, practical \Rightarrow poly time computable \Rightarrow asymmetry is restored, even for one pair of messages
 - assume factorizing is computationally difficult
 - p, q be primes and $x_i = (p, q)$ and $y_i = pq$
 - $(p, q) \rightarrow pq$ is more likely than $pq \rightarrow (p, q)$
Asymmetry: “Application”

- Complex system
- two regions \mathcal{X} and \mathcal{Y} are interacting
- measurements in each region
 \[(x_1, y_1), (x_2, y_2), \ldots\]
- time resolution not enough to decide whether x_i is a reply to y_i or vice versa
- minimal description length: compare $C_{\text{odd}} + C_{\text{ev}}$ of
 \[x_1, y_1, x_2, y_2, \ldots\]
 and
 \[y_1, x_1, y_2, x_2, \ldots\]

- Decompressors are non-computable, in practice always computable (or extensible to comp ones)
- But, practical \Rightarrow poly time computable \Rightarrow asymmetry is restored, even for one pair of messages
 - assume factorizing is computationally difficult
 - p, q be primes and $x_1 = (p, q)$ and $y_1 = pq$
 - $(p, q) \rightarrow pq$ is more likely than $pq \rightarrow (p, q)$
Asymmetry: “Application”

- Complex system
- two regions \(\mathcal{X} \) and \(\mathcal{Y} \) are interacting
- measurements in each region

\[
(x_1, y_1), (x_2, y_2), \ldots
\]

- time resolution not enough to decide whether \(x_i \) is a reply to \(y_i \) or vice versa
- minimal description length: compare

\[
C_{\text{odd}} + C_{\text{ev}} \text{ of } x_1, y_1, x_2, y_2, \ldots
\]

and

\[
y_1, x_1, y_2, x_2, \ldots
\]

- Decompressors are non-computable, in practice always computable (or extensible to comp ones)
- But, practical \(\Rightarrow \) poly time computable \(\Rightarrow \) asymmetry is restored, even for one pair of messages

- assume factorizing is computationally difficult
- \(p, q \) be primes and \(x_1 = (p, q) \) and \(y_1 = pq \)
- \((p, q) \rightarrow pq \) is more likely than \(pq \rightarrow (p, q) \)
Asymmetry: “Application”

- Complex system
- two regions \(\mathcal{X} \) and \(\mathcal{Y} \) are interacting
- measurements in each region
 \[(x_1, y_1), (x_2, y_2), \ldots\]
- time resolution not enough to decide whether \(x_i \) is a reply to \(y_i \) or vice versa
- minimal description length: compare \(C_{\text{odd}} + C_{\text{ev}} \) of
 \[x_1, y_1, x_2, y_2, \ldots\]
 and
 \[y_1, x_1, y_2, x_2, \ldots\]

- Decompressors are non-computable, in practice always computable (or extensible to comp ones)
- But, practical \(\Rightarrow \) poly time computable \(\Rightarrow \) asymmetry is restored, even for one pair of messages
 - assume factorizing is computationally difficult
 - \(p, q \) be primes and \(x_1 = (p, q) \) and \(y_1 = pq \)
 - \((p, q) \to pq \) is more likely than \(pq \to (p, q) \)
Complex system
- two regions \(\mathcal{X} \) and \(\mathcal{Y} \) are interacting
- measurements in each region
 \[(x_1, y_1), (x_2, y_2), \ldots \]
- time resolution not enough to decide whether \(x_i \) is a reply to \(y_i \) or vice versa
- minimal description length: compare \(C_{\text{odd}} + C_{\text{ev}} \) of
 \[x_1, y_1, x_2, y_2, \ldots\]
 and
 \[y_1, x_1, y_2, x_2, \ldots\]

- Decompressors are non-computable, in practice always computable (or extensible to comp ones)
- But, practical \(\Rightarrow \) poly time computable \(\Rightarrow \) asymmetry is restored, even for one pair of messages
 - assume factorizing is computationally difficult
 - \(p, q \) be primes and \(x_1 = (p, q) \) and \(y_1 = pq \)
 - \((p, q) \rightarrow pq \) is more likely than \(pq \rightarrow (p, q) \)
Asymmetry: “Application”

- Complex system
- two regions \mathcal{X} and \mathcal{Y} are interacting
- measurements in each region

 $$(x_1, y_1), (x_2, y_2), \ldots$$

- time resolution not enough to decide whether x_i is a reply to y_i or vice versa
- minimal description length: compare $C_{\text{odd}} + C_{\text{ev}}$ of

 $$x_1, y_1, x_2, y_2, \ldots$$

 and

 $$y_1, x_1, y_2, x_2, \ldots$$

- Decompressors are non-computable, in practice always computable (or extensible to comp ones)
- But, practical \Rightarrow poly time computable \Rightarrow asymmetry is restored, even for one pair of messages

 - assume factorizing is computationally difficult
 - p, q be primes and $x_1 = (p, q)$ and $y_1 = pq$
 - $(p, q) \rightarrow pq$ is more likely than $pq \rightarrow (p, q)$

Main result: differ for some (x, y) by $O(n)$ and factor $2 - \varepsilon$.
Asymmetry: “Application”

- Complex system
- two regions \mathcal{X} and \mathcal{Y} are interacting
- measurements in each region
 \[(x_1, y_1), (x_2, y_2), \ldots\]
- time resolution not enough to decide whether x_i is a reply to y_i or vice versa
- minimal description length: compare $C_{\text{odd}} + C_{\text{ev}}$ of
 \[x_1, y_1, x_2, y_2, \ldots\]
 and
 \[y_1, x_1, y_2, x_2, \ldots\]

Main result: differ for some (x, y) by $O(n)$ and factor $2 - \varepsilon$.

Warning:
- Decompressors are non-computable, in practice always computable (or extensible to comp ones)
- But, practical \Rightarrow poly time computable \Rightarrow asymmetry is restored, even for one pair of messages
 - assume factorizing is computationally difficult
 - p, q be primes and $x_1 = (p, q)$ and $y_1 = pq$
 - $(p, q) \rightarrow pq$ is more likely than $pq \rightarrow (p, q)$
Asymmetry: “Application”

- Complex system
- two regions \mathcal{X} and \mathcal{Y} are interacting
- measurements in each region

 $$(x_1, y_1), (x_2, y_2), \ldots$$

- time resolution not enough to decide whether x_i is a reply to y_i or vice versa
- minimal description length: compare $C_{\text{odd}} + C_{\text{ev}}$ of

 $$x_1, y_1, x_2, y_2, \ldots$$

 and

 $$y_1, x_1, y_2, x_2, \ldots$$

Main result: differ for some (x, y) by $O(n)$ and factor $2 - \varepsilon$.

Warning:

- Decompressors are non-computable, in practice always computable (or extensible to comp ones)
- But, practical \Rightarrow poly time computable \Rightarrow asymmetry is restored, even for one pair of messages
 - assume factorizing is computationally difficult
 - p, q be primes and $x_1 = (p, q)$ and $y_1 = pq$
 - $(p, q) \rightarrow pq$ is more likely than $pq \rightarrow (p, q)$
Asymmetry: “Application”

- Complex system
- two regions \(\mathcal{X} \) and \(\mathcal{Y} \) are interacting
- measurements in each region
 \[(x_1, y_1), (x_2, y_2), \ldots\]
- time resolution not enough to decide whether \(x_i \) is a reply to \(y_i \) or vice versa
- minimal description length: compare \(C_{\text{odd}} + C_{\text{ev}} \) of
 \[x_1, y_1, x_2, y_2, \ldots\]
 and
 \[y_1, x_1, y_2, x_2, \ldots\]

Main result: differ for some \((x, y)\) by \(O(n) \) and factor \(2 - \varepsilon \).

Warning:
- Decompressors are non-computable, in practice always computable (or extensible to comp ones)
- But, practical \(\Rightarrow \) poly time computable \(\Rightarrow \) asymmetry is restored, even for one pair of messages
 - assume factorizing is computationally difficult
 - \(p, q \) be primes and \(x_1 = (p, q) \) and \(y_1 = pq \)
 - \((p, q) \rightarrow pq \) is more likely than \(pq \rightarrow (p, q) \)
Complex system

two regions \mathcal{X} and \mathcal{Y} are interacting

measurements in each region

$$(x_1, y_1), (x_2, y_2), \ldots$$

time resolution not enough to decide whether x_i is a reply to y_i or vice versa

minimal description length: compare $C_{\text{odd}} + C_{\text{ev}}$ of

$x_1, y_1, x_2, y_2, \ldots$

and

$y_1, x_1, y_2, x_2, \ldots$

Main result: differ for some (x, y) by $O(n)$ and factor $2 - \varepsilon$.

Warning:

- Decompressors are non-computable, in practice always computable (or extensible to comp ones)
- But, practical \Rightarrow poly time computable \Rightarrow asymmetry is restored, even for one pair of messages
 - assume factorizing is computationally difficult
 - p, q be primes and $x_1 = (p, q)$ and $y_1 = pq$
 - $(p, q) \rightarrow pq$ is more likely than $pq \rightarrow (p, q)$
Asymmetry: “Application”

- Complex system
- two regions \(\mathcal{X} \) and \(\mathcal{Y} \) are interacting
- measurements in each region
 \[(x_1, y_1), (x_2, y_2), \ldots\]
- time resolution not enough to decide whether \(x_i \) is a reply to \(y_i \) or vice versa
- minimal description length: compare \(C_{\text{odd}} + C_{\text{ev}} \) of
 \[x_1, y_1, x_2, y_2, \ldots\]
 and
 \[y_1, x_1, y_2, x_2, \ldots\]

Main result: differ for some \((x, y)\) by \(O(n)\)
and factor \(2 - \varepsilon\).

Warning:
- Decompressors are non-computable, in practice always computable (or extensible to comp ones)
- But, practical \(\Rightarrow\) poly time computable \(\Rightarrow\) asymmetry is restored, even for one pair of messages
 - assume factorizing is computationally difficult
 - \(p, q \) be primes and \(x_1 = (p, q) \) and \(y_1 = pq \)
 - \((p, q)\) \(\rightarrow\) \(pq\) is more likely than \(pq\) \(\rightarrow\) \((p, q)\)
Complex system

two regions \(\mathcal{X}\) and \(\mathcal{Y}\) are interacting

measurements in each region

\[(x_1, y_1), (x_2, y_2), \ldots\]

time resolution not enough to decide whether \(x_i\) is a reply to \(y_i\) or vice versa

minimal description length: compare \(C_{\text{odd}} + C_{\text{ev}}\) of

\[x_1, y_1, x_2, y_2, \ldots\]

and

\[y_1, x_1, y_2, x_2, \ldots\]

Main result: differ for some \((x, y)\) by \(O(n)\) and factor \(2 - \varepsilon\).

Warning:

- Decompressors are non-computable, in practice always computable (or extensible to comp ones)
- But, practical \(\Rightarrow\) poly time computable \(\Rightarrow\) asymmetry is restored, even for one pair of messages
 - assume factorizing is computationally difficult
 - \(p, q\) be primes and \(x_1 = (p, q)\) and \(y_1 = pq\)
 - \((p, q) \rightarrow pq\) is more likely than \(pq \rightarrow (p, q)\)
Information transfer (neurology and economics) measures influence of \(\mathcal{Y} \) on \(\mathcal{X} \) as

\[
H(X_n|X_{n-1}) - H(X_n|X_{n-1}, Y_{n-1})
\]

time delay for interaction assumed
without: \(H(X_n|X_{n-1}) - H(X_n|X_{n-1}, Y_n) \rightarrow \) symmetric
algorithmic information theory: \(IT(y \rightarrow x) = C(x) - C_{ev}(y_1 x_1 \cdots y_n x_n) \)
main result: for all \(\varepsilon > 0 \) there are \(x, y \) s.t. \(IT(y \rightarrow x) = C(x, y) + O(1) \) and
\(IT(x \rightarrow y) \leq \varepsilon C(x, y) \),
example with primes \(\rightarrow \) good direction appears.

Unfortunately, in our example no direction of influence is natural.
Example where the direction means anything?
information transfer (neurology and economics) measures influence of \(Y \) on \(X \) as

\[
H(X_n|X_{n-1}) - H(X_n|X_{n-1}, Y_{n-1})
\]

time delay for interaction assumed
- without: \(H(X_n|X_{n-1}) - H(X_n|X_{n-1}, Y_n) \rightarrow \) symmetric
- algorithmic information theory: \(IT(y \rightarrow x) = C(x) - Cev(y_1x_1 \cdots y_nx_n) \)
- main result: for all \(\varepsilon > 0 \) there are \(x, y \) s.t. \(IT(y \rightarrow x) = C(x, y) + O(1) \) and \(IT(x \rightarrow y) \leq \varepsilon C(x, y) \),
- example with primes \(\rightarrow \) good direction appears.

Unfortunately, in our example no direction of influence is natural.
Example where the direction means anything?
information transfer (neurology and economics) measures influence of \(Y \) on \(X \) as

\[
H(X_n|X_{n-1}) - H(X_n|X_{n-1}, Y_{n-1})
\]

time delay for interaction assumed

without: \(H(X_n|X_{n-1}) - H(X_n|X_{n-1}, Y_n) \rightarrow \) symmetric

algorithmic information theory: \(IT(y \rightarrow x) = C(x) - C_{ev}(y_1x_1 \cdots y_nx_n) \)

main result: for all \(\varepsilon > 0 \) there are \(x, y \) s.t. \(IT(y \rightarrow x) = C(x, y) + O(1) \) and \(IT(x \rightarrow y) \leq \varepsilon C(x, y) \),

example with primes \(\rightarrow \) good direction appears.

Unfortunately, in our example no direction of influence is natural. Example where the direction means anything?
information transfer (neurology and economics) measures influence of \(Y \) on \(X \) as

\[
H(X_n|X_{n-1}) - H(X_n|X_{n-1}, Y_{n-1})
\]

time delay for interaction assumed

without: \(H(X_n|X_{n-1}) - H(X_n|X_{n-1}, Y_n) \) \(\rightarrow \) symmetric

algorithmic information theory: \(IT(y \rightarrow x) = C(x) - C_{ev}(y_1x_1 \cdots y_nx_n) \)

main result: for all \(\varepsilon > 0 \) there are \(x, y \) s.t. \(IT(y \rightarrow x) = C(x, y) + O(1) \) and
\(IT(x \rightarrow y) \leq \varepsilon C(x, y) \),

example with primes \(\rightarrow \) good direction appears.

Unfortunately, in our example no direction of influence is natural.
Example where the direction means anything?
information transfer (neurology and economics) measures influence of Y on X as

$$H(X_n|X_{n-1}) - H(X_n|X_{n-1}, Y_{n-1})$$

time delay for interaction assumed

without: $H(X_n|X_{n-1}) - H(X_n|X_{n-1}, Y_n) \rightarrow$ symmetric

algorithmic information theory: $IT(y \rightarrow x) = C(x) - C_{ev}(y_1x_1 \cdots y_nx_n)$

main result: for all $\varepsilon > 0$ there are x, y s.t. $IT(y \rightarrow x) = C(x, y) + O(1)$ and $IT(x \rightarrow y) \leq \varepsilon C(x, y)$,

example with primes \rightarrow good direction appears.

Unfortunately, in our example no direction of influence is natural. Example where the direction means anything?
information transfer (neurology and economics) measures influence of Y on X as

$$H(X_n|X_{n-1}) - H(X_n|X_{n-1}, Y_{n-1})$$

time delay for interaction assumed
without: $H(X_n|X_{n-1}) - H(X_n|X_{n-1}, Y_n) \rightarrow$ symmetric
algorithmic information theory: $IT(y \rightarrow x) = C(x) - C_{ev}(y_1x_1 \cdots y_nx_n)$
main result: for all $\varepsilon > 0$ there are x, y s.t. $IT(y \rightarrow x) = C(x, y) + O(1)$ and $IT(x \rightarrow y) \leq \varepsilon C(x, y)$,
example with primes \rightarrow good direction appears.

Unfortunately, in our example no direction of influence is natural. Example where the direction means anything?
information transfer (neurology and economics) measures influence of \(Y \) on \(X \) as

\[
H(X_n|X_{n-1}) - H(X_n|X_{n-1}, Y_{n-1})
\]

time delay for interaction assumed

without: \(H(X_n|X_{n-1}) - H(X_n|X_{n-1}, Y_n) \rightarrow \) symmetric

algorithmic information theory: \(IT(y \rightarrow x) = C(x) - C_{ev}(y_1x_1 \cdots y_nx_n) \)

main result: for all \(\epsilon > 0 \) there are \(x, y \) s.t. \(IT(y \rightarrow x) = C(x, y) + O(1) \) and \(IT(x \rightarrow y) \leq \epsilon C(x, y) \),

example with primes \(\rightarrow \) good direction appears.

Unfortunately, in our example no direction of influence is natural. Example where the direction means anything?
The end, questions?
1. Introduction
2. Definitions and results
3. Application
4. Proof
Theorem

There exist a sequence ω such that for all n

$$(C_{\text{odd}} + C_{\text{ev}})(\omega_1 \cdots \omega_{2n}) \geq n \log \frac{4}{3} + C(\omega_1 \cdots \omega_{2n}) + O(\log n)$$

- State the problem in terms of on-line semimeasures,
- Game on strings of length 2,
- Concatenate the winning strategies.
Theorem

There exist a sequence ω such that for all n

$$(C_{\text{odd}} + C_{\text{ev}})(\omega_1 \cdots \omega_{2n}) \geq n \log \frac{4}{3} + C(\omega_1 \cdots \omega_{2n}) + O(\log n)$$

- State the problem in terms of on-line semimeasures,
- Game on strings of length 2,
- Concatenate the winning strategies.
Theorem

There exist a sequence \(\omega \) such that for all \(n \)

\[
(C_{\text{odd}} + C_{\text{ev}})(\omega_1 \cdots \omega_{2n}) \geq n \log \frac{4}{3} + C(\omega_1 \cdots \omega_{2n}) + O(\log n)
\]

- State the problem in terms of on-line semimeasures,
- Game on strings of length 2,
- Concatenate the winning strategies.
There exist a sequence ω such that for all n

$$(C_{\text{odd}} + C_{\text{ev}})(\omega_1 \cdots \omega_{2n}) \geq n \log\frac{4}{3} + C(\omega_1 \cdots \omega_{2n}) + O(\log n)$$

- State the problem in terms of on-line semimeasures,
- Game on strings of length 2,
- Concatenate the winning strategies.
Probabilistic Turing machine \leftrightarrow lower-semicomputable semimeasure

\[U \]

\[\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & \ldots \\
\end{array} \]

\[\leftarrow \]

\[\begin{array}{ccccccc}
\ldots & & & & & & \\
\end{array} \]

\[P : \{0, 1\}^* \rightarrow [0, 1] \text{ is a semimeasure if} \]

\[P(x0) + P(x1) \leq P(x) \]

- There exist maximal lower-semicomputable semimeasures \(M(x) \).
- **Coding theorem:** \(- \log M(x) = C(x) + O(\log C(x)) \).
Probabilistic Turing machine \leftrightarrow lower-semicomputable semimeasure

$P : \{0, 1\}^* \rightarrow [0, 1]$ is an even semimeasure if

$P(x_0) + P(x_1) \leq P(x)$ if $|x_0|$ is even,

$P(x_0) = P(x_1) = P(x)$ otherwise.

- There exist maximal lower-semicomputable even semimeasures $M_{ev}(x)$.
- Coding theorem[CSVV08]: $- \log M_{ev}(x) = C_{ev}(x) + O(\log |x|)$.
(On-line) semimeasures and (on-line) coding theorem

Probabilistic Turing machine \leftrightarrow lower-semicomputable semimeasure

$P : \{0, 1\}^* \rightarrow [0, 1]$ is an **even** semimeasure if

\[
P(x0) + P(x1) \leq P(x) \quad \text{if } |x0| \text{ is even},
P(x0) = P(x1) = P(x) \quad \text{otherwise}.
\]

- There exist maximal lower-semicomputable even semimeasures $M_{ev}(x)$.
- **Coding theorem**\textbf{[CSVV08]}: $-\log M_{ev}(x) = C_{ev}(x) + O(\log |x|)$.

Warning: an even machine can not be modeled by products of l.s.c. P_i.

$P_{ev}(y_1 x_1 \cdots y_n x_n) = P_1(x_1|y_1) \cdot \ldots \cdot P_n(x_n|y_n) = P(x|y)$.

Bruno Bauwens (Université de Lorraine, LORIA)
For all lsc P_{odd}, P_{ev} there exist ω and lsc P s.t. $(P_{odd} \cdot P_{ev})(\omega_1 \cdots \omega_{2n}) \leq \left(\frac{3}{4}\right)^n P(\omega_1 \cdots \omega_{2n})$
For all lsc $P_{\text{odd}}, P_{\text{ev}}$ there exist ω and lsc P s.t. $(P_{\text{odd}} \cdot P_{\text{ev}})(\omega_1 \cdots \omega_{2n}) \leq \left(\frac{3}{4}\right)^n P(\omega_1 \cdots \omega_{2n})$

Game for $|x| = 2$:
- Nature $\rightarrow P_{\text{odd}}, P_{\text{ev}}$
- Math $\rightarrow P$ s.t. $\sum_{|x|=2} P(x) \leq 3/4$

Math wins if either
- $P_{\text{odd}}(\varepsilon) > 1$
- $P_{\text{ev}}(\varepsilon) > 1$
- $P_{\text{ev}}(x) P_{\text{odd}}(x) \leq P(x)$
 for some 2-bit x
For all lsc $P_{\text{odd}}, P_{\text{ev}}$ there exist ω and lsc P s.t. $(P_{\text{odd}} \cdot P_{\text{ev}})(\omega_1 \cdots \omega_{2n}) \leq \left(\frac{3}{4}\right)^n P(\omega_1 \cdots \omega_{2n})$

Game for $|x| = 2$:
- Nature $\rightarrow P_{\text{odd}}, P_{\text{ev}}$
- Math $\rightarrow P$ s.t. $\sum_{|x|=2} P(x) \leq 3/4$

Math wins if either
- $P_{\text{odd}}(\varepsilon) > 1$
- $P_{\text{ev}}(\varepsilon) > 1$
- $P_{\text{ev}}(x)P_{\text{odd}}(x) \leq P(x)$
 for some 2-bit x
For all lsc \(P_{\text{odd}}, P_{\text{ev}} \) there exist \(\omega \) and lsc \(\mathcal{P} \) s.t. \((P_{\text{odd}} \cdot P_{\text{ev}})(\omega_1 \cdots \omega_{2n}) \leq \left(\frac{3}{4} \right)^n P(\omega_1 \cdots \omega_{2n})\)

Game for \(|x| = 2\):
- Nature \(\rightarrow \) \(P_{\text{odd}}, P_{\text{ev}} \)
- Math \(\rightarrow \) \(\mathcal{P} \) s.t. \(\sum_{|x|=2} P(x) \leq \frac{3}{4} \)

Math wins if either
- \(P_{\text{odd}}(\varepsilon) > 1 \)
- \(P_{\text{ev}}(\varepsilon) > 1 \)
- \(P_{\text{ev}}(x)P_{\text{odd}}(x) \leq P(x) \)
 for some 2-bit \(x \)

Wait until either
- \(p > \frac{1}{2} \)
- \(u > \frac{1}{2} \)

Suppose \(p > \frac{1}{2} \)
For all lsc $P_{\text{odd}}, P_{\text{ev}}$ there exist ω and lsc P s.t. $(P_{\text{odd}} \cdot P_{\text{ev}})(\omega_1 \cdots \omega_{2n}) \leq \left(\frac{3}{4}\right)^n P(\omega_1 \cdots \omega_{2n})$

Game for $|x| = 2$:
- Nature $\rightarrow P_{\text{odd}}, P_{\text{ev}}$
- Math $\rightarrow P$ s.t. $\sum_{|x|=2} P(x) \leq 3/4$

Math wins if either
- $P_{\text{odd}}(\varepsilon) > 1$
- $P_{\text{ev}}(\varepsilon) > 1$
- $P_{\text{ev}}(x)P_{\text{odd}}(x) \leq P(x)$
 for some 2-bit x
For all lsc $P_{\text{odd}}, P_{\text{ev}}$ there exist ω and lsc P s.t. $(P_{\text{odd}} \cdot P_{\text{ev}})(\omega_1 \cdots \omega_{2n}) \leq \left(\frac{3}{4}\right)^n P(\omega_1 \cdots \omega_{2n})$

Game for $|x| = 2$:
- Nature $\rightarrow P_{\text{odd}}, P_{\text{ev}}$
- Math $\rightarrow P$ s.t. $\sum_{|x|=2} P(x) \leq 3/4$
Math wins if either
- $P_{\text{odd}}(\varepsilon) > 1$
- $P_{\text{ev}}(\varepsilon) > 1$
- $P_{\text{ev}}(x)P_{\text{odd}}(x) \leq P(x)$
 for some 2-bit x

Suppose $p > \frac{1}{2}$
G_n is played on restrict. $P_{\text{odd}}, P_{\text{ev}}$

How use output in G_m?

- Increases of P
 - leaf by leaf,
 - $P(x) = o_x e_x$ product of upperbounds for $P_{\text{odd}}(x), P_{\text{ev}}(x)$,
 - discart leaf as one of the upperbounds is violated,
 - if all leafs are discarted then $P_{\text{odd}}(\epsilon) > 1$ or $P_{\text{ev}}(\epsilon) > 1$,
 - rescale inputs small game with o_x and e_x,
 - multiply output with $o_x e_x$.
Concatinating strategies for G_n and G_m to G_{n+m}

G_n is played on restrict. $P_{\text{odd}}, P_{\text{ev}}$

How use output in G_m?

- Increases of P leaf by leaf,
 - $P(x) = o_x e_x$ product of upperbounds for $P_{\text{odd}}(x), P_{\text{ev}}(x)$,
 - discard leaf as one of the upperbounds is violated,
 - if all leaves are discarded then $P_{\text{odd}}(\varepsilon) > 1$ or $P_{\text{ev}}(\varepsilon) > 1$,
 - rescale inputs small game with o_x and e_x,
 - multiply output with $o_x e_x$.
Concatinating strategies for G_n and G_m to G_{n+m}

G_n is played on restrict. $P_{\text{odd}}, P_{\text{ev}}$

How use output in G_m?

- Increases of P
 - leaf by leaf,
 - $P(x) = o_x e_x$ product of upperbounds for $P_{\text{odd}}(x), P_{\text{ev}}(x)$,
 - discart leaf as one of the upperbounds is violated,
 - if all leaves are discarted then $P_{\text{odd}}(\varepsilon) > 1$ or $P_{\text{ev}}(\varepsilon) > 1$,
 - rescale inputs small game with o_x and e_x,
 - multiply output with $o_x e_x$.

Bruno Bauwens (Université de Lorraine, LORIA)

On-line Kolmogorov complexity
Concatinating strategies for G_n and G_m to G_{n+m}

G_n is played on restrict. $P_{\text{odd}}, P_{\text{ev}}$

How use output in G_m?

- Increases of P
 - leaf by leaf,
 - $P(x) = o_x e_x$ product of upperbounds for $P_{\text{odd}}(x), P_{\text{ev}}(x)$,
 - discard leaf as one of the upperbounds is violated,
 - if all leaves are discarded then $P_{\text{odd}}(\epsilon) > 1$ or $P_{\text{ev}}(\epsilon) > 1$,
 - rescale inputs small game with o_x and e_x,
 - multiply output with $o_x e_x$.

Concatinating strategies for G_n and G_m to G_{n+m}

G_n is played on restrict. $P_{\text{odd}}, P_{\text{ev}}$

How use output in G_m?

- Increases of P
 - leaf by leaf,
 - $P(x) = o_x e_x$ product of upperbounds for $P_{\text{odd}}(x), P_{\text{ev}}(x)$,
 - discart leaf as one of the upperbounds is violated,
 - if all leafs are discarted then $P_{\text{odd}}(\varepsilon) > 1$ or $P_{\text{ev}}(\varepsilon) > 1$,
 - rescale inputs small game with o_x and e_x,
 - multiply output with $o_x e_x$.
Concatinating strategies for G_n and G_m to G_{n+m}

G_n is played on restrict. $P_{\text{odd}}, P_{\text{ev}}$

How use output in G_m?

- Increases of P leaf by leaf,
 - $P(x) = o_x e_x$ product of upperbounds for $P_{\text{odd}}(x), P_{\text{ev}}(x)$,
 - discard leaf as one of the upperbounds is violated,
 - if all leaves are discarded then $P_{\text{odd}}(\varepsilon) > 1$ or $P_{\text{ev}}(\varepsilon) > 1$,
 - rescale inputs small game with o_x and e_x,
 - multiply output with $o_x e_x$.

Bruno Bauwens (Université de Lorraine, LORIA)
Concatinating strategies for G_n and G_m to G_{n+m}

G_n is played on restrict. $P_{\text{odd}}, P_{\text{ev}}$
How use output in G_m?

- Increases of P
 leaf by leaf,
- $P(x) = o_x e_x$ product of
 upperbounds for $P_{\text{odd}}(x), P_{\text{ev}}(x)$,
- discard leaf as one of the
 upperbounds is violated,
- if all leaves are discarded then
 $P_{\text{odd}}(\varepsilon) > 1$ or $P_{\text{ev}}(\varepsilon) > 1$,
- rescale inputs small game with o_x and e_x,
- multiply output with $o_x e_x$.

Bruno Bauwens (Université de Lorraine, LORIA)
Concatinating strategies for G_n and G_m to G_{n+m}

G_n is played on restrict. $P_{\text{odd}}, P_{\text{ev}}$

How use output in G_m?

- Increases of P
 - leaf by leaf,
 - $P(x) = o_x e_x$ product of upperbounds for $P_{\text{odd}}(x), P_{\text{ev}}(x)$,
 - discard leaf as one of the upperbounds is violated,
 - if all leaves are discarded then $P_{\text{odd}}(\varepsilon) > 1$ or $P_{\text{ev}}(\varepsilon) > 1$,
 - rescale inputs small game with o_x and e_x,
 - multiply output with $o_x e_x$.

Bruno Bauwens (Université de Lorraine, LORIA)
On-line Kolmogorov complexity
Concatinating strategies for G_n and G_m to G_{n+m}

G_n is played on restrict. $P_{\text{odd}}, P_{\text{ev}}$

How use output in G_m?

- Increases of P
 leaf by leaf,
- $P(x) = o_x e_x$ product of upperbounds for $P_{\text{odd}}(x), P_{\text{ev}}(x)$,
- discart leaf as one of the upperbounds is violated,
- if all leafs are discarted then $P_{\text{odd}}(\varepsilon) > 1$ or $P_{\text{ev}}(\varepsilon) > 1$,
- rescale inputs small game with o_x and e_x,
- multiply output with $o_x e_x$.
Concatinating strategies for G_n and G_m to G_{n+m}

G_n is played on restrict. $P_{\text{odd}}, P_{\text{ev}}$

How use output in G_m?

- Increases of P
- leaf by leaf,
- $P(x) = o_x e_x$ product of upperbounds for $P_{\text{odd}}(x), P_{\text{ev}}(x)$,
- discard leaf as one of the upperbounds is violated,
- if all leafs are discarted then $P_{\text{odd}}(\varepsilon) > 1$ or $P_{\text{ev}}(\varepsilon) > 1$,
- rescale inputs small game with o_x and e_x,
- multiply output with $o_x e_x$.
Concatinating strategies for G_n and G_m to G_{n+m}

G_n is played on restrict. $P_{\text{odd}}, P_{\text{ev}}$

How use output in G_m?

- Increases of P
 - leaf by leaf,

 - $P(x) = o_x e_x$ product of upperbounds for $P_{\text{odd}}(x), P_{\text{ev}}(x)$,

- discard leaf as one of the upperbounds is violated,

- if all leafs are discarded then $P_{\text{odd}}(\varepsilon) > 1$ or $P_{\text{ev}}(\varepsilon) > 1$,

- rescale inputs small game with o_x and e_x,

- multiply output with $o_x e_x$.
Concatinating strategies for G_n and G_m to G_{n+m}

G_n is played on restrict. $P_{\text{odd}}, P_{\text{ev}}$

How use output in G_m?

- Increases of P
 leaf by leaf,
- $P(x) = o_x e_x$ product of upperbounds for $P_{\text{odd}}(x), P_{\text{ev}}(x)$,
- discart leaf as one of the upperbounds is violated,
- if all leafs are discarted then $P_{\text{odd}}(\varepsilon) > 1$ or $P_{\text{ev}}(\varepsilon) > 1$,
- rescale inputs small game with o_x and e_x,
- multiply output with $o_x e_x$.

Bruno Bauwens (Université de Lorraine, LORIA)
On-line Kolmogorov complexity

10 / 10
Concatinating strategies for G_n and G_m to G_{n+m}

G_n is played on restrict. P_{odd}, P_{ev}
How use output in G_m?

- Increases of P
- leaf by leaf,
- $P(x) = o_x e_x$ product of upperbounds for $P_{odd}(x)$, $P_{ev}(x)$,
- discard leaf as one of the upperbounds is violated,
- if all leafs are discarted then $P_{odd}(\varepsilon) > 1$ or $P_{ev}(\varepsilon) > 1$,
- rescale inputs small game with o_x and e_x,
- multiply output with $o_x e_x$.