
Probabilistic algorithms
in computability theory

Laurent Bienvenu (Laboratoire J-V Poncelet, Moscow)

Computability, Complexity and Randomness
Moscow, September 2013

1. Introduction

Motivation.

1. Introduction 3/32

Motivation.

• It is obvious that by computable means only, one cannot
generate something non-computable (duh).

• If we additionally have access to a source of randomness, can
we achieve more than what we could by computable means
alone?

Note: this is a computability-theoretic question. As usual in computability
theory, the basic objects will be infinite binary sequences and computable =
computable by Turing machine.

For the moment: source of randomness = source of (infinitely many)
independent random bits with distribution (1/2,1/2).

1. Introduction 4/32

Motivation.

• It is obvious that by computable means only, one cannot
generate something non-computable (duh).

• If we additionally have access to a source of randomness, can
we achieve more than what we could by computable means
alone?

Note: this is a computability-theoretic question. As usual in computability
theory, the basic objects will be infinite binary sequences and computable =
computable by Turing machine.

For the moment: source of randomness = source of (infinitely many)
independent random bits with distribution (1/2,1/2).

1. Introduction 4/32

Motivation.

• It is obvious that by computable means only, one cannot
generate something non-computable (duh).

• If we additionally have access to a source of randomness, can
we achieve more than what we could by computable means
alone?

Note: this is a computability-theoretic question. As usual in computability
theory, the basic objects will be infinite binary sequences and computable =
computable by Turing machine.

For the moment: source of randomness = source of (infinitely many)
independent random bits with distribution (1/2,1/2).

1. Introduction 4/32

The issue of reproducibility.

There are essentially two ways to understand this question,
depending on whether we care about reproducibility.

If we do not, then the answer is trivial: take an infinite binary
sequence x at random, and print x. With probability 1 you have
generated a non-computable sequence! (there are only countably
many computable sequences)

The issue is that if we were to repeat this process, we would almost
surely obtain some x ′ ̸= x.

1. Introduction 5/32

The issue of reproducibility.

There are essentially two ways to understand this question,
depending on whether we care about reproducibility.

If we do not, then the answer is trivial: take an infinite binary
sequence x at random, and print x. With probability 1 you have
generated a non-computable sequence! (there are only countably
many computable sequences)

The issue is that if we were to repeat this process, we would almost
surely obtain some x ′ ̸= x.

1. Introduction 5/32

The issue of reproducibility.

There are essentially two ways to understand this question,
depending on whether we care about reproducibility.

If we do not, then the answer is trivial: take an infinite binary
sequence x at random, and print x. With probability 1 you have
generated a non-computable sequence! (there are only countably
many computable sequences)

The issue is that if we were to repeat this process, we would almost
surely obtain some x ′ ̸= x.

1. Introduction 5/32

The issue of reproducibility.

So the next question is:

Is there a non-computable sequence x which can be
probabilistically computed with positive probability?

By this we mean: is there an algorithm (machine) M with access to a
random source r and such that

P[M(r) = x] > 0?

1. Introduction 6/32

The issue of reproducibility.

This question is the computability-theoretic analogue of the
celebrated open question of computational complexity:

BPP ?
= P

1. Introduction 7/32

Derandomization in computability.

The answer is negative: one can always derandomize.

Theorem (De Leeuwe, Moore, Shannon, Shapiro - Sacks)
If
there
is
an
algorithm
(machine) M with
access
to
a
random
source r
such
that P[M(r) = x] > 0, then x is
a
computable
sequence.

Looks like this theorem is the end of the story, but it is not.

1. Introduction 8/32

Derandomization in computability.

The answer is negative: one can always derandomize.

Theorem (De Leeuwe, Moore, Shannon, Shapiro - Sacks)
If
there
is
an
algorithm
(machine) M with
access
to
a
random
source r
such
that P[M(r) = x] > 0, then x is
a
computable
sequence.

Looks like this theorem is the end of the story, but it is not.

1. Introduction 8/32

Derandomization in computability.

The answer is negative: one can always derandomize.

Theorem (De Leeuwe, Moore, Shannon, Shapiro - Sacks)
If
there
is
an
algorithm
(machine) M with
access
to
a
random
source r
such
that P[M(r) = x] > 0, then x is
a
computable
sequence.

Looks like this theorem is the end of the story, but it is not.

1. Introduction 8/32

2. When randomness helps

Solving problems probabilistically.

Randomness can be useful to solve problems which have no
computable solution.

Setting: mass problems. Given a set C of infinite sequences, is it
possible to get some element of C:
- deterministically?
- probabilistically (but non-reproducibly)?

There are some classes C for which the answer to the first question
is no, and the second is yes (obvious example: C = set of
non-computable sequences).

2. When randomness helps 10/32

Solving problems probabilistically.

Randomness can be useful to solve problems which have no
computable solution.

Setting: mass problems. Given a set C of infinite sequences, is it
possible to get some element of C:
- deterministically?
- probabilistically (but non-reproducibly)?

There are some classes C for which the answer to the first question
is no, and the second is yes (obvious example: C = set of
non-computable sequences).

2. When randomness helps 10/32

Solving problems probabilistically.

Randomness can be useful to solve problems which have no
computable solution.

Setting: mass problems. Given a set C of infinite sequences, is it
possible to get some element of C:
- deterministically?
- probabilistically (but non-reproducibly)?

There are some classes C for which the answer to the first question
is no, and the second is yes (obvious example: C = set of
non-computable sequences).

2. When randomness helps 10/32

Solving problems probabilistically.
A much less obvious example:

Theorem (Kurtz 1981 - Kautz 1991)
Let C be
the
set
of
functions
from N to N (encoded
as
binary
sequences)
which
are
dominated
by
no
computable
function. There
exists
a
probabilistic
algorithm M such
that P[M(r) ∈ C] > 0.

[For
the
experts: this
is
a
corollary
of
the
fact
that
no
two
2-random
sequence
is
computably
dominated]

But what does the algorithm look like?

2. When randomness helps 11/32

Solving problems probabilistically.
A much less obvious example:

Theorem (Kurtz 1981 - Kautz 1991)
Let C be
the
set
of
functions
from N to N (encoded
as
binary
sequences)
which
are
dominated
by
no
computable
function. There
exists
a
probabilistic
algorithm M such
that P[M(r) ∈ C] > 0.

[For
the
experts: this
is
a
corollary
of
the
fact
that
no
two
2-random
sequence
is
computably
dominated]

But what does the algorithm look like?

2. When randomness helps 11/32

Fireworks.

The algorithm was made more explicit by Gács and Shen (2012),
using an amusing analogy: the fireworks shop.

• Suppose we walk into a fireworks shop.
• The fireworks sold there are very cheap so we are suspicious

they could be defective.
• Since they are so cheap, we can ask the owner to test a few

before buying one.
• Our goal: either buy a good one (untested) and take it home or

get the owner to fail a test (and then sue him).

2. When randomness helps 12/32

Fireworks.

1 2 3 4 5 n

...

2. When randomness helps 13/32

Fireworks.

1 2 3 4 5 n

...

test

2. When randomness helps 13/32

Fireworks.

1 2 3 4 5 n

...

test test

2. When randomness helps 13/32

Fireworks.

1 2 3 4 5 n

...

test test test

2. When randomness helps 13/32

Fireworks.

1 2 3 4 5 n

...

test test test buy!

2. When randomness helps 13/32

Fireworks.

1 2 3 4 5 n

...

test test test buy!

win lose

2. When randomness helps 13/32

Fireworks.

Clearly there is no deterministic strategy which works in all cases.

There is however a good probabilistic strategy, which wins with
probability at least n

n+1 in all cases, where n is the number of
fireworks:

1. Pick a number k at random between 1 and n+ 1
2. Test the k− 1 first fireworks
3. Buy the k-th one (unless k = n+ 1)

2. When randomness helps 14/32

Fireworks.

Clearly there is no deterministic strategy which works in all cases.

There is however a good probabilistic strategy, which wins with
probability at least n

n+1 in all cases, where n is the number of
fireworks:

1. Pick a number k at random between 1 and n+ 1
2. Test the k− 1 first fireworks
3. Buy the k-th one (unless k = n+ 1)

2. When randomness helps 14/32

Fireworks.

Clearly there is no deterministic strategy which works in all cases.

There is however a good probabilistic strategy, which wins with
probability at least n

n+1 in all cases, where n is the number of
fireworks:

1. Pick a number k at random between 1 and n+ 1
2. Test the k− 1 first fireworks
3. Buy the k-th one (unless k = n+ 1)

2. When randomness helps 14/32

Fireworks.

To see that the strategy succeeds with probability at least n
n+1 , notice

that the only bad case for us is when we pick the first bad one
(convention: (n+ 1)-th fireworks is bad).

Indeed if we pick one before the first bad one, it will be good, so we
win, and if we pick one after the first bad one, the first bad one will
have failed the test.

2. When randomness helps 15/32

Fireworks.

To see that the strategy succeeds with probability at least n
n+1 , notice

that the only bad case for us is when we pick the first bad one
(convention: (n+ 1)-th fireworks is bad).

Indeed if we pick one before the first bad one, it will be good, so we
win, and if we pick one after the first bad one, the first bad one will
have failed the test.

2. When randomness helps 15/32

Fireworks and the Kurtz-Kautz theorem.

Back to the proof: we want to construct a function f which is not
dominated by any (total) computable one.

First, list all the partial computable functions φ1, φ2, φ3, ...

We apply a fireworks strategy for each φi.

2. When randomness helps 16/32

Fireworks and the Kurtz-Kautz theorem.

Back to the proof: we want to construct a function f which is not
dominated by any (total) computable one.

First, list all the partial computable functions φ1, φ2, φ3, ...

We apply a fireworks strategy for each φi.

2. When randomness helps 16/32

Fireworks and the Kurtz-Kautz theorem.

Back to the proof: we want to construct a function f which is not
dominated by any (total) computable one.

First, list all the partial computable functions φ1, φ2, φ3, ...

We apply a fireworks strategy for each φi.

2. When randomness helps 16/32

Fireworks and the Kurtz-Kautz theorem.

• For each i, pick a number ki between 1 and 2i+1

• Repeat ki − 1 times:
▶ Pick the first fresh number w (on which f is not defined yet)
▶ Define f(w) = 0
▶ Test whether φi(w) terminates. [While waiting, take care of

other strategies for other φj].

• If previous loop terminates, pick a final fresh w, pause all other
strategies, wait for φi(w) to terminate, and if it does, define
f(w) = φi(w) + 1.

2. When randomness helps 17/32

Fireworks and the Kurtz-Kautz theorem.

Just like in the fireworks game, the only bad case is when the φi(w)
is defined for all w’s picked during stage 2 (loop), and undefined on
the w picked during stage 3 (final pick).

Thus with probability at least 1 − 2−i−1, we guarantee that f is not
dominated by φi.

Over all i, this gives a probability of success of at least
1 −

∑
i 2

−i−1 > 0.

2. When randomness helps 18/32

Fireworks and the Kurtz-Kautz theorem.

Just like in the fireworks game, the only bad case is when the φi(w)
is defined for all w’s picked during stage 2 (loop), and undefined on
the w picked during stage 3 (final pick).

Thus with probability at least 1 − 2−i−1, we guarantee that f is not
dominated by φi.

Over all i, this gives a probability of success of at least
1 −

∑
i 2

−i−1 > 0.

2. When randomness helps 18/32

Fireworks and the Kurtz-Kautz theorem.

Just like in the fireworks game, the only bad case is when the φi(w)
is defined for all w’s picked during stage 2 (loop), and undefined on
the w picked during stage 3 (final pick).

Thus with probability at least 1 − 2−i−1, we guarantee that f is not
dominated by φi.

Over all i, this gives a probability of success of at least
1 −

∑
i 2

−i−1 > 0.

2. When randomness helps 18/32

Fireworks and the Kurtz-Kautz theorem.

The fireworks technique is quite powerful, and can be used to solve
even more difficult problems. For example, one can use the same
argument to build a 1-generic.

[1-generic = infinite binary sequence which meets or (strongly) avoids every
c.e. set of finite strings.]

2. When randomness helps 19/32

Fireworks and the Kurtz-Kautz theorem.

What have we gained?

• An intuitive understanding of the construction
• ... which allows, via a careful analysis, to strengthen Kautz’s

original results and solve open questions:

Theorem (Bienvenu, Porter)
Every
Demuth
random
computes
a
1-generic.

2. When randomness helps 20/32

Fireworks and the Kurtz-Kautz theorem.

What have we gained?

• An intuitive understanding of the construction

• ... which allows, via a careful analysis, to strengthen Kautz’s
original results and solve open questions:

Theorem (Bienvenu, Porter)
Every
Demuth
random
computes
a
1-generic.

2. When randomness helps 20/32

Fireworks and the Kurtz-Kautz theorem.

What have we gained?

• An intuitive understanding of the construction
• ... which allows, via a careful analysis, to strengthen Kautz’s

original results and solve open questions:

Theorem (Bienvenu, Porter)
Every
Demuth
random
computes
a
1-generic.

2. When randomness helps 20/32

The typical Turing degree.

A deeper phenomenon has been discovered recently by Barmpalias,
Day and Lewis.

Theorem (Barmpalias, Day, Lewis)
Let T be
a
Turing
functional. With
probability
1
over x:
-
either T(x) is
undefined
-
or T(x) is
computable
-
or T(x) computes
a
1-generic

[For
the
experts: it
suffices
to
take x 2-random]

2. When randomness helps 21/32

The typical Turing degree.

A deeper phenomenon has been discovered recently by Barmpalias,
Day and Lewis.

Theorem (Barmpalias, Day, Lewis)
Let T be
a
Turing
functional. With
probability
1
over x:
-
either T(x) is
undefined
-
or T(x) is
computable
-
or T(x) computes
a
1-generic

[For
the
experts: it
suffices
to
take x 2-random]

2. When randomness helps 21/32

The typical Turing degree.

The hidden reason behind this is that when T(x) is not computable, it
still contains some randomness:

• Lemma (Bienvenu, Porter / Folklore?) If x is randomly
distributed, T(x) [up to small modification] follows a
0’-computable (=limit computable) probability distribution.

• Kautz-Levin-Demuth: if a probability distribution is computable,
then one can extract pure (uniform) randomness from it (modulo
atoms).

• Here, the distribution is merely 0’-computable, so we can only
extract randomness in a limit-computable way.

2. When randomness helps 22/32

The typical Turing degree.

This is like playing the fireworks game with a “limit coin”... and it is
enough! Just restart the game if the coin changes its value.

Therefore:

Theorem (Bienvenu, Porter)
If x is
distributed
according
to
a 0’-computable
distribution µ, then
µ-almost
surely, x is
either
an
atom
of µ, or
can
be
used
to
compute
a
1-generic.

2. When randomness helps 23/32

The typical Turing degree.

This is like playing the fireworks game with a “limit coin”... and it is
enough! Just restart the game if the coin changes its value.

Therefore:

Theorem (Bienvenu, Porter)
If x is
distributed
according
to
a 0’-computable
distribution µ, then
µ-almost
surely, x is
either
an
atom
of µ, or
can
be
used
to
compute
a
1-generic.

2. When randomness helps 23/32

Random algorithms and math. theorems.

Consider a mathematical theorem of type

∀X ∃YΦ(X, Y)

where X and Y can be encoded as infinite binary sequences.

Examples:
• Bolzano-Weierstrass: For every sequence of reals in [0, 1],

there exists a converging subsequence.
• König’s lemma: Every finitely branching tree with infinitely many

nodes has an infinite path.
• Ramsey’s theorem: For every coloring of the pairs of integers

with k colors, there exists an infinite, monochromatic, set of
integers.

• ...

2. When randomness helps 24/32

Random algorithms and math. theorems.
Consider a mathematical theorem of type

∀X ∃YΦ(X, Y)

where X and Y can be encoded as infinite binary sequences.

Examples:
• Bolzano-Weierstrass: For every sequence of reals in [0, 1],

there exists a converging subsequence.
• König’s lemma: Every finitely branching tree with infinitely many

nodes has an infinite path.
• Ramsey’s theorem: For every coloring of the pairs of integers

with k colors, there exists an infinite, monochromatic, set of
integers.

• ...

2. When randomness helps 24/32

Random algorithms and math. theorems.
Consider a mathematical theorem of type

∀X ∃YΦ(X, Y)

where X and Y can be encoded as infinite binary sequences.

Examples:
• Bolzano-Weierstrass: For every sequence of reals in [0, 1],

there exists a converging subsequence.
• König’s lemma: Every finitely branching tree with infinitely many

nodes has an infinite path.
• Ramsey’s theorem: For every coloring of the pairs of integers

with k colors, there exists an infinite, monochromatic, set of
integers.

• ...
2. When randomness helps 24/32

Random algorithms and math. theorems.

This gives rise to natural mass problems: for a given X, consider the
problem

CX = {Y | Φ(X, Y)}

Question: when X is computable, can one generate an element of CX:
- deterministically?
- probabilistically?

2. When randomness helps 25/32

Random algorithms and math. theorems.

This gives rise to natural mass problems: for a given X, consider the
problem

CX = {Y | Φ(X, Y)}

Question: when X is computable, can one generate an element of CX:
- deterministically?
- probabilistically?

2. When randomness helps 25/32

Random algorithms and math. theorems.
Once there are problems for which no computable solution exists
but such a solution can be found probabilstically:

Rainbow Ramsey Theorem: for all coloring of pairs of integers with
possibly infinitely many colors, such that every color is used at
most k times, there exists an infinite subset of N which is a rainbow
(no color appears more than once).

There is a computable coloring for which there is no computable
rainbow (easy), but...

Theorem (Csima-Mileti, 2009)
Given
a
computable
coloring, there
exists
a
probabilistic
algorithm
which
produces
an
infinite
rainbow
with
positive
probability.

2. When randomness helps 26/32

Random algorithms and math. theorems.
Once there are problems for which no computable solution exists
but such a solution can be found probabilstically:

Rainbow Ramsey Theorem: for all coloring of pairs of integers with
possibly infinitely many colors, such that every color is used at
most k times, there exists an infinite subset of N which is a rainbow
(no color appears more than once).

There is a computable coloring for which there is no computable
rainbow (easy), but...

Theorem (Csima-Mileti, 2009)
Given
a
computable
coloring, there
exists
a
probabilistic
algorithm
which
produces
an
infinite
rainbow
with
positive
probability.

2. When randomness helps 26/32

3. When randomness does not help

Randomness does not help... often.

As one might expect, randomness does not often help: when a
problem has no computable solution, it is usually the case that one
cannot generate a solution with a probabilistic algorithm.

Perhaps one of the most famous mass problems is the set of
consistent completions of Peano arithmetic. We know from Gödel’s
theorem than there is no computable such object, and:

Theorem (Jockusch, Soare, 1972)
No
probabilistic
algorithm
can
generate
a
consistent
completion
of PA.

3. When randomness does not help 28/32

Randomness does not help... often.

As one might expect, randomness does not often help: when a
problem has no computable solution, it is usually the case that one
cannot generate a solution with a probabilistic algorithm.

Perhaps one of the most famous mass problems is the set of
consistent completions of Peano arithmetic. We know from Gödel’s
theorem than there is no computable such object, and:

Theorem (Jockusch, Soare, 1972)
No
probabilistic
algorithm
can
generate
a
consistent
completion
of PA.

3. When randomness does not help 28/32

Randomness does not help... often.

As one might expect, randomness does not often help: when a
problem has no computable solution, it is usually the case that one
cannot generate a solution with a probabilistic algorithm.

Perhaps one of the most famous mass problems is the set of
consistent completions of Peano arithmetic. We know from Gödel’s
theorem than there is no computable such object, and:

Theorem (Jockusch, Soare, 1972)
No
probabilistic
algorithm
can
generate
a
consistent
completion
of PA.

3. When randomness does not help 28/32

Randomness does not help... often.

Another interesting example: shift-complex sequences. Levin
showed that there exists an infinite binary sequence X and a
constant c such that for every substring σ of X,

K(σ) ≥ 0.99|σ|− c

Theorem (Rumyantsev, 2011)
No
probabilistic
algorithm
can
generate
a
shift-complex
sequence
(not
even
for
any
positive α instead
of
0.99).

3. When randomness does not help 29/32

Randomness does not help... often.

Another interesting example: shift-complex sequences. Levin
showed that there exists an infinite binary sequence X and a
constant c such that for every substring σ of X,

K(σ) ≥ 0.99|σ|− c

Theorem (Rumyantsev, 2011)
No
probabilistic
algorithm
can
generate
a
shift-complex
sequence
(not
even
for
any
positive α instead
of
0.99).

3. When randomness does not help 29/32

Wait and defeat.

There is a common idea to prove such theorems: a “wait and defeat”
strategy, which is the dual of a majority vote argument:

• Run the probabilistic algorithm to see how different oracles
“vote”

• Then use the universality of the class to defeat the majority of
voters

3. When randomness does not help 30/32

Wait and defeat.

There is a common idea to prove such theorems: a “wait and defeat”
strategy, which is the dual of a majority vote argument:

• Run the probabilistic algorithm to see how different oracles
“vote”

• Then use the universality of the class to defeat the majority of
voters

3. When randomness does not help 30/32

Wait and defeat.

There is a common idea to prove such theorems: a “wait and defeat”
strategy, which is the dual of a majority vote argument:

• Run the probabilistic algorithm to see how different oracles
“vote”

• Then use the universality of the class to defeat the majority of
voters

3. When randomness does not help 30/32

Random algorithms and math. theorems.

The same can be done for mathematical theorems
(theorem ∀X ∃YΦ(X, Y)→ class CX).

Bienvenu, Patey, Shafer: many, many examples of theorems such
that there is no probabilistic algorithm for CX. See Ludovic’s talk...

For such results, due to (in general) the lack of universality, one
needs to diagonalize against all probabilistic algorithms. For this,
one arranges the wait-and-defeat technique in a priority construction
(most of the time with finite injury).

3. When randomness does not help 31/32

Random algorithms and math. theorems.

The same can be done for mathematical theorems
(theorem ∀X ∃YΦ(X, Y)→ class CX).

Bienvenu, Patey, Shafer: many, many examples of theorems such
that there is no probabilistic algorithm for CX. See Ludovic’s talk...

For such results, due to (in general) the lack of universality, one
needs to diagonalize against all probabilistic algorithms. For this,
one arranges the wait-and-defeat technique in a priority construction
(most of the time with finite injury).

3. When randomness does not help 31/32

Random algorithms and math. theorems.

The same can be done for mathematical theorems
(theorem ∀X ∃YΦ(X, Y)→ class CX).

Bienvenu, Patey, Shafer: many, many examples of theorems such
that there is no probabilistic algorithm for CX. See Ludovic’s talk...

For such results, due to (in general) the lack of universality, one
needs to diagonalize against all probabilistic algorithms. For this,
one arranges the wait-and-defeat technique in a priority construction
(most of the time with finite injury).

3. When randomness does not help 31/32

Other directions.

• Deep Π0
1 classes (Bienvenu, Porter, Taveneaux)

• What is a typical outcome of a probabilistic algorithm?
(randomness w.r.t. to lower-semicomputable semimeasures)

• Invariant degrees (V’Yugin, Levin – recent work by Hölzl and
Porter)

3. When randomness does not help 32/32

Other directions.

• Deep Π0
1 classes (Bienvenu, Porter, Taveneaux)

• What is a typical outcome of a probabilistic algorithm?
(randomness w.r.t. to lower-semicomputable semimeasures)

• Invariant degrees (V’Yugin, Levin – recent work by Hölzl and
Porter)

3. When randomness does not help 32/32

Other directions.

• Deep Π0
1 classes (Bienvenu, Porter, Taveneaux)

• What is a typical outcome of a probabilistic algorithm?
(randomness w.r.t. to lower-semicomputable semimeasures)

• Invariant degrees (V’Yugin, Levin – recent work by Hölzl and
Porter)

3. When randomness does not help 32/32

Other directions.

• Deep Π0
1 classes (Bienvenu, Porter, Taveneaux)

• What is a typical outcome of a probabilistic algorithm?
(randomness w.r.t. to lower-semicomputable semimeasures)

• Invariant degrees (V’Yugin, Levin – recent work by Hölzl and
Porter)

3. When randomness does not help 32/32

	Introduction
	When randomness helps
	When randomness does not help

