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Boolean Threshold Functions

Boolean function f: {a, b}" — {—1,1}.
Polynomial threshold gate computing f is a polynomial

p € R[xy,...,xn| such that for all x € {a, b}" we have
f(x) = sign p(x).
Complexity measures:

The degree of p is the degree of the polynomial.

The length of p is the number of its monomials.

N

27



Example

{a, b} = {1,2}.

p(x,y) = 16 — 15xy + 3x2y2.
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Example

{a, b} = {1,2}.

p(x,y) = 16 — 15xy + 3x2y2.

16—-15+3>0
16 —304+12<0
16 —-60+48 >0
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Example

{a, b} = {1,2}.
p(x,y) = 16 — 15xy + 3x2y2.

x=y=1 16-154+3>0
=2,y=1 16 —-30+12<0
x=y=2 16 -60+48 >0

p(x, y) computes PARITY function:
p(x,y) > 0 iff x + y is odd.
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The domain

The most studied cases are {a, b} = {0,1} and {a, b} = {—1,1}.
In these cases we can assume that deg p < n.

Indeed, x? = x, if x € {0,1} and

x2=1,if xe {-1,1}.
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The domain

The most studied cases are {a, b} = {0,1} and {a, b} = {—1,1}.

In these cases we can assume that deg p < n.
Indeed, x? = x, if x € {0,1} and
x2=1,if xe {-1,1}.

For general {a, b} this is not the case, in principle degree greater
than n can help to reduce the length.
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Degree vs. length

Indeed, large degree can help.

Theorem (Basu et. al, 2004)

PARITY over {1,2} requires length 2" when the degree is bounded
by n, but is computable by degree n® and length n + 1 threshold
gate.

Our example:
p(x,y) = 16 — 15xy + 3x%y?

n =2, length is n+ 1 = 3 degree is n*> = 4.
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The PTF complexity class

Given /(n) and d(n), we denote by
PTF. 5(/(n), d(n))

the class of Boolean functions over {a, b}" computable by
polynomial threshold functions of length /(n) and degree d(n).
PTF,.5(/(n),00) — no bound on the degree.

PTFa(d(n)) = PTF,s(poly(n), d(n)).
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The PTF complexity class

Given /(n) and d(n), we denote by
PTF. 5(/(n), d(n))

the class of Boolean functions over {a, b}" computable by
polynomial threshold functions of length /(n) and degree d(n).
PTF,.5(/(n),00) — no bound on the degree.

PTF,,(d(n)) = PTF, s(poly(n), d(n)).

Below we concentrate on {1,2}-domain. Our results also hold for

all {a, b}-domains, which are essentially different from {0,1} and

{~1,1}.
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Circuit Classes Notation

We consider classes AND, OR, XOR, ACO.
THR: f(x) = sign(>_; wix; + wp).
MAJ: f(x) =sign(>_; wixi + wp), where all w; are integers

bounded by polynomial in n.

Let C1 and C> be two classes of Boolean circuits.
By C1 o C> we denote the class of polynomial size circuits

consisting of circuit from C; with circuits from C, as inputs.
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Exponential form of PTFs

For a variable y € {1,2} consider x = log, y € {0,1}.
Then y = 2%,

For monomials we have
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Initial results

Lemma
PTF12(2,00) = THR and PTF1 (2, poly(n)) = MAJ.
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Initial results

Lemma
PTF12(2,00) = THR and PTF1 (2, poly(n)) = MAJ.

Proof.
Consider THR gate: > i_; wix; — wp > 0.
Raise each side to the power of 2.

In the other direction, consider
12201 3% 4 02 m bixi >

Interesting case: sign c1 # sign cp.
Move one summand to the other side and take a logarithm.

O



Bounded degree PTFs

Theorem

PTF12(poly(n)) = THR o MAJ
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Bounded degree PTFs

Theorem

PTF12(poly(n)) = THR o MAJ
Note that

PTFo.1(poly(n)) = THR o AND
and

PTF_11(poly(n)) = THR o XOR.

Thus, threshold gates over {1,2} are strictly stronger.
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Depth 2 Threshold Circuits

THR o THR
7

THR o MAJ
Goldman et al., 92
MAJ o MAJ

Theorem (Goldman, Hastad, Razborov, 92)
MAJ o THR = MAJ o MAJ.
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Bounded degree PTFs

Theorem (restated)

PTF1.2(poly(n)) = THR o MAJ

Main observation: linear form in each MAJ gate can obtain only
polynomially many values.

We can precisely compute each MAJ gate by polynomial length
{1,2}-polynomial.
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Byproduct

Lemma
Any polynomial size circuit in THR o MAJ is equivalent to a

polynomial size circuit of the same form such that all majority
gates on the bottom level are monotone.

The same is true for MAJ o MAJ.
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Lower bounds

Let x,y € {0,1}".
Inner product function:

IP(X7y) :@Xi/\}/i-
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Lower bounds

Let x,y € {0,1}".
Inner product function:

IP(X7y) :@Xi/\}/i-

Theorem (restated)

PTF12(poly(n)) = THR o MAJ

Corollary
IP ¢ PTF12(poly(n)). AND o OR o AND; ¢ PTFy5(poly(n)).
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Lower bounds

Let x,y € {0,1}".
Inner product function:

IP(X7y) = @Xi A Yi.
Theorem (restated)

PTF12(poly(n)) = THR o MAJ

Corollary
IP ¢ PTF12(poly(n)). AND o OR o AND; ¢ PTFy5(poly(n)).

What about PTF; »(00)?
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Sign rank

Let A = (ajj) be a real matrix with nonzero elements.
Sign rank of A is the minimal rank of the real matrix B = (bj)
such that sign b;j = sign aj; for all i, .

For the Boolean function f(x, y) consider the matrix

M = (f(x,y))x,y of size 2" x 2". The sign rank of f(x, y) is the
sign rank of M;.

Theorem (Forster, 2002)

The sign rank of TP(x, y) is 2.

Theorem (Razborov, Sherstov, 2010)
The sign rank of AND o OR o AND, js 2n*/%).,

From this: TP and AND o OR o AND> require exponential size
THR o MAJ circuits.
Why: MAJ gates compute low rank matrices. Rank is subadditive.
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Lower bounds for PTF; 2(o0)

Lemma

Assume f : {0,1}" x {0,1}" — {—1,1} is computed by a PTF of
length s on the domain {1,2}" x {1,2}". Then the matrix M¢ has
sign rank at most s.

Proof.

Consider one monomial

o (1) (1)

i

It defines rank 1 matrix. O
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Lower bounds for PTF; 2(o0)

Lemma

Assume f : {0,1}" x {0,1}" — {—1,1} is computed by a PTF of
length s on the domain {1,2}" x {1,2}". Then the matrix M¢ has
sign rank at most s.

Proof.

Consider one monomial
ibi _ i b;

i i i
It defines rank 1 matrix. O
Corollary
Any PTF on the domain {1,2}" x {1,2}" computing IP, requires
length 2" Any PTF on the domain {1,2}" x {1,2}" computing
AND o OR o ANDy requires length 29(n/?),
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Bounded Weight vs. Unbounded Weight

Is it true that PTFy 2(poly(n)) = PTF12(00)?
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Bounded Weight vs. Unbounded Weight

Is it true that PTFy 2(poly(n)) = PTF12(00)?
Open problem!

Theorem
If THR o THR € THR o MAJ o AND then

PTFLQ(OO) ,¢_ PTFl’z(poly(n)).
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Bounded Weight vs. Unbounded Weight

Is it true that PTFy 2(poly(n)) = PTF12(00)?
Open problem!

Theorem
If THR o THR € THR o MAJ o AND; then

PTF12(00) € PTF12(poly(n)).
To prove this we need the following lemma.

Lemma
THR o THR C PTF; 2(00) o AND».
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Proof of the lemma

Lemma (restated)
THR o THR C PTFy2(00) o ANDy.
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Proof of the lemma

Lemma (restated)
THR o THR C PTFy2(00) o ANDy.

Proof of the lemma.
Definition. ETHR: f(x) = 1 iff Y. wjx; + wop = 0.

It is known that THR o THR = THR o ETHR (Hansen, P., 2010).
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Proof of the lemma

Lemma (restated)
THR o THR C PTFy2(00) o ANDy.

Proof of the lemma.
Definition. ETHR: f(x) = 1 iff Y. wjx; + wop = 0.

It is known that THR o THR = THR o ETHR (Hansen, P., 2010).

Note that ETHR-gate defined by L(x) = 0 can be approximated
by 2_C'L(X)2, where c is positive constant.

Thus we can rewrite THR o ETHR in the form
Sign (Z 2—C~Li(X)2> ,

where L;(x) are linear forms.
Opening the brackets in the exponent we get the circuit of the
form PTFLQ(OO) o AN Dg.
D 18 /27



Bounded Weight vs. Unbounded Weight

Theorem (restated)

If THR o THR € THR o MAJ o AND, then
PTFl 2 g PTF1 2(poly(n))

Proof.
Assume PTF1 >(poly(n)) = PTF;2(c0). Then

THR o THR C PTF;5(c0) o AND, =

PTF12(poly(n)) o AND, = THR o MAJ o AND»,

Note that THR o THR C THR o MAJ o AND> implies
THR o THR o AND = THR o MAJ o AND.
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Relations to Communication Complexity

f:{0,1}" x {0,1}" — {0,1}.

There are players Alice and Bob.

Alice gets x, Bob gets y.

They have to compute f(x,y).

Communication complexity of f is the worst case bit size of their
communication.

Unbounded error randomized communication complexity:

Each of Alice and Bob has an access to the source of random bits
(separately). They have to output f(x, y) correctly with probability
> 1/2. For this version of complexity we use the notation UCC(f).

Theorem (Paturi, Simon, 1986)

For any f UCC(f) is equal to the logarithm of the sign rank of f
up to an additive constant.
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Three players, Number on the Forehead

Suppose now there are 3 players A, B and C and f depends on
variables x, y,z € {0,1}".

A has access to y, z, B has access to x, z, C has access to y, z.
We can consider unbounded error case in this setting too.

We denote it by UCG5(f).
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Tensor rank

Let A= (ajjx) be an order 3 tensor, i,j,k =1,...,n.

Ais a cylinder tensor if it does not depend on one of the
coordinates.

A'is a cylinder product if it can be written as a Hadamard product
A1 ® Ax ® Az where Aj,As, and Ajs are cylinder tensors. That is,

R OROR)

The sign complexity of an order 3 tensor A = (ajj) is the
minimum r such that there exist cylinder product tensors

Bi,...,B,, with B, = (b(f;)), such that
sign(ay) = sign (b,(Jk) . bfjk)) for all 7, j, k.

Note that we have a nonstandard notion of rank!



Tensor rank and Communication Complexity

Lemma

Consider f : {0,1}" x {0,1}" x {0,1}" — {—1,1} and let s be the
uniform sign complexity of the associated communication tensor
T¢. Then

UCG5(f) = O(logy s).
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Lemma (restated)
Assume f : {0,1}" x {0,1}" — {—1,1} is computed by a PTF of
length s on the domain {1,2}" x {1,2}". Then the matrix Ms has
sign rank at most s.

Thus, f above has communication complexity Q(s).
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Lemma (restated)
Assume f : {0,1}" x {0,1}" — {—1,1} is computed by a PTF of
length s on the domain {1,2}" x {1,2}". Then the matrix M¢ has
sign rank at most s.

Thus, f above has communication complexity Q(s).

Lemma

Assume that f : {0,1}" x {0,1}" x {0,1}" — {—1,1} is computed
by a PTF12(c0) o AND2. Then the sign complexity of T¢ is
polynomial in n.

The proof is analogous: 2P(X¥:2) = 2P1(x.y)pP2(x:2)2p3(y2)
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Lemma (restated)
THR o THR C PTFy2(00) o AND,.

Corollary

Assume that f : {0,1}" x {0,1}" x {0,1}" — {—1,1} has
unbounded error 3-player communication complexity c. Then every
THR o THR computing f must contain 2€/poly(n) gates.

We do not know functions with large unbounded error 3-player
communication complexity.
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Relations between the domains

Our results works for all domains {a, b} such that a, b # 0 and

jal # |Bl.

But what is the relation of classes for different domains? Is it true
that

PTFLQ(OO) = PTF173(OO)7
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Relations between the domains

Our results works for all domains {a, b} such that a, b # 0 and
|a| # |b].
But what is the relation of classes for different domains? Is it true
that
PTFLQ(OO) = PTF173(OO)7
Open problem!
But we know that PTF; 2(c0) = PTF; _»(00).

More generally,

Lemma

For all a,b € R and for any natural number k we have
PTF,p(00) = PTF 4 p(00).

PTFLQ(OO) = PTF174(OO) = PTFL_Q(OO).
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Other results

We also consider max-plus version of PTFs:

> they are somewhere between AND o THR and
AND o OR o THR;

» we know lower bounds for them (through usual PTFs);

» the class is still strong (can compute various “complex”
functions).

Other partial results:

» Exponential degree implies doubly exponential weight and vice
versa;

» Exponential degree upper bound for length 3 PTFs;

» Exponential degree lower bound for constant length PTFs.
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