Closed Left-R.E. Sets

Sanjay Jain (NUS), Frank Stephan (NUS) and Jason Teutsch (PSU)

National University of Singapore Pennsylvania State University

Content

- 1. R.e. and left-r.e. sets
- 2. Reducibilities considered
- 3. Closed left-r.e. sets
- 4. Cohesive sets and r-cohesive sets
- 5. Weakly 1-generic sets
- 6. Kolmogorov complexity

1. R.e. and left-r.e. sets

A nonempty set A is r.e. iff it is the range of a recursive function.

Alternatively, one can say A is r.e. iff it is the limit of a uniformly recursive sequence A_0, A_1, \ldots of sets with $A_n \subseteq A_{n+1}$ for all n.

This can be generalised to approximation from the left. Let $A_n \leq_{lex} A_{n+1}$ if either $A_n = A_{n+1}$ or the minimal element x of the symmetric difference of A_n and A_{n+1} is in A_{n+1} .

A set A is left-r.e. iff it is the limit of a uniformly recursive sequence A_0, A_1, \ldots of sets with $A_n \leq_{lex} A_{n+1}$ for all n.

R.e. sets are left-r.e. sets. Reason: If $A_n \subset A_{n+1}$ then $A_n <_{lex} A_{n+1}$.

Examples

The halting problem \mathbf{K} is the most famous example of an r.e. set which is not recursive.

Every set A has a real value $real(A) = \sum_{n \in A} 2^{-n-1}$ and A is left-r.e. iff real(A) is the supremum of a recursive sequence of rationals.

Chaitin [1975] gave the example of a set, called Ω , which is left-r.e. but not r.e.: Here the idea is to construct a universal prefix-free Turing machine **TM** which reads bits from a tape and calculates in parallel; the set Ω is chosen such that **TM** halts with probability **real**(Ω) when the bits on the tape are randomly drawn with respect to the uniform distribution.

A set A is recursive iff both, A and its complement, are r.e. iff both, A and its complement, are left-r.e. sets.

2. Reducibilities

 $A \leq_{asc} B$ (A is ascendingly reducible to B) iff there is a non-decreasing recursive function f such that $\forall x [x \in A \Leftrightarrow f(x) \in B]$.

 $A \leq_m B$ (A is many-one reducible to B) iff there is a recursive function f such that $\forall x [x \in A \Leftrightarrow f(x) \in B]$.

 $\begin{array}{l} A \leq_c B \ (A \ \text{is conjunctively reducible to } B) \ \text{iff there is a} \\ \text{recursive function } f \ \text{such that} \ \forall x \ [x \in A \Leftrightarrow D_{f(x)} \subseteq B]. \\ \text{Canonical index } y \ \text{of } D_y \ y = \sum_{z \in D_y} 2^z. \end{array}$

 $A \leq_d B$ (A is disjunctively reducible to B) iff there is a recursive function f such that $\forall x [x \in A \Leftrightarrow B \cap D_{f(x)} \neq \emptyset]$.

 $\begin{array}{l} A \leq_p B \ (A \ \text{is positively reducible to } B) \ \text{iff there is a set } C \\ \text{with } A \leq_d C \land C \leq_c B. \end{array}$

Examples

If $B = \{3, 8\}$ and $A = \{33, 88, 92\}$ then B is many-one reducible to A via the mapping $x \mapsto 11x$.

The set {3,8} is ascendingly reducible to the set {33,88,92}. However, the set {33,88,92} is many-one reducible but not ascendingly reducible to the set {3,8}.

The set $\{x : 2x \in A \lor 2x + 1 \in A\}$ is disjunctively reducible to A but, in general, not conjunctively reducible to A and also not many-one reducible or ascendingly reducible.

Assume that $A = \{a_0, a_1, \ldots\}$ with $a_0 = 1$ and $a_{n+1} \in \{2a_n, 2a_n + 1\}$ for all n. Then every set B which is positively reducible to A is also disjunctively reducible to A. Furthermore, if A is non-recursive then no infinite r.e. set is many-one reducible to A.

3. Closedness

Definition A set A is many-one closed left-r.e. iff every B many-one reducible to A is a left-r.e. set. A set A is ascending closed left-r.e. iff every B ascendingly reducible to A is a left-r.e. set. Similarly for the conjunctive, disjunctive and positive closed left-r.e. sets.

Remarks

If a set is a many-one closed left-r.e. set then it is also an ascending-closed left-r.e. set.

Every r.e. set is a many-one closed left-r.e. set. Chaitin's Ω is a left-r.e. set but not an ascending closed left-r.e. set.

Example

If **B** is r.e. and nonrecursive then the set

 $\mathbf{A} = \{\mathbf{2x}: \mathbf{x} \in \mathbf{B}\} \cup \{\mathbf{2x} + \mathbf{1}: \mathbf{x} \notin \mathbf{B}\}$

is left-r.e. but not an r.e. set. Given an approximation B_n of B, the approximation $A_n = \{2x : x \in B_n\} \cup \{2x+1 : x \notin B_n\}$ is then a left-r.e. approximation of A.

To see this, assume that $A_{n+1}(y) \neq A_n(y)$ and y is the least such number. Then the x with $2x \leq y \leq 2x+1$ satisfies that $x \in B_{n+1} - B_n$. It follows that $2x \in A_{n+1} - A_n$. So 2x = y and $A_n <_{lex} A_{n+1}$.

Note that the complement of **B** is ascendingly reducible to **A**. However, the complement of **B** is co-r.e. and neither an r.e. nor a left-r.e. set. So **A** is neither an ascending closed left-r.e. nor a many-one closed left-r.e. set.

Existence of Closed Set

Theorem

There is a positive closed left-r.e. set which is not an r.e. set.

Basics of Construction of ${\bf A}$

- A is not an r.e. set;
- $\psi_{\mathbf{e}}^{\mathbf{A}}$ is left-r.e. for a numbering $\psi_{\mathbf{0}}, \psi_{\mathbf{1}}, \dots$ of polynomial time computable positive reducibilities $\psi_{\mathbf{e}}^{\mathbf{A}}$ such that $\mathbf{use}(\psi_{\mathbf{e}}^{\mathbf{A}}, \mathbf{x}) \leq \mathbf{x}.$

Make movable finite sets $\mathbf{X}_{\mathbf{e},\mathbf{s}}$ with $\min(\mathbf{X}_{\mathbf{e}+1,\mathbf{s}}) > \max(\mathbf{X}_{\mathbf{e},\mathbf{s}})$ and $\mathbf{X}_{\mathbf{e},\mathbf{s}}$ converging to limit $\mathbf{X}_{\mathbf{e}}$ and

$$\mathbf{A} = ilde{\mathbf{A}} \cup igcup_{\mathbf{2e}} \mathbf{X}_{\mathbf{e}} = \mathbb{N} - igcup_{\mathbf{2e+1}} \mathbf{X}_{\mathbf{2e+1}}$$

for some r.e. set $\tilde{\mathbf{A}}$.

Requirements Used

Goals of the requirements.

- R_{2d+1} : If W_d intersects infinitely many X_{2e} then W_d intersects also some X_{2e+1} ;
- $\mathbf{R}_{2\langle \mathbf{d}, \mathbf{e} \rangle}$: $\psi_{\mathbf{d}}^{\mathbf{A} \cup \mathbf{X}_{2\mathbf{e}+1}}(\mathbf{y}) > \psi_{\mathbf{d}}^{\mathbf{A}}(\mathbf{y})$ for some $\mathbf{y} \le \max(\mathbf{X}_{2\mathbf{e}+1})$.

Second requirements are intended to be made true for e = d, d + 1, ... so that updates caused by first requirements do preserve that ψ_d^A is a left-r.e. set. The following restraints are utilised.

- $\label{eq:likelihood} \begin{array}{l} \bullet \ Blk_{2d+1} = 2e+1 \mbox{ protect sets } X_{0,s}, X_{1,s}, \ldots, X_{2e+1,s} \\ \mbox{ from being changed by any requirement } R_{2d'+1} \mbox{ with } \\ d' > d. \end{array}$
- $Blk_{2d} = 2e + 1$ says that one currently tries to satisfy requirement $R_{2\langle d, e \rangle}$ and that all requirements of the type $R_{2\langle d, e \rangle}$ are satisfied for e' with d < e' < e.

A is not an r.e. set

The requirement R_{2d+1} achieves that $A \neq W_d$ by either having that $A \cap W_d$ is finite or that $A \cap W_d$ intersects some X_{2e+1} .

- $\mathbf{R_{2d+1}}$ requires attention at \mathbf{s} with parameter \mathbf{e} if $\mathbf{W_{d,s}}$ intersects $\mathbf{X_{2e+2,s}}$ but not any $\mathbf{W_{2e'+1,s}}$ with $\mathbf{e}' \in \{0, 1, \dots, \mathbf{e}\}$ and $\mathbf{Blk_{2d'+1}} < 2\mathbf{e} + 1$ for all $\mathbf{d}' < \mathbf{d}$ and $\mathbf{Blk_{2d'}} \neq 2\mathbf{e} + 1$ for all $\mathbf{d}' < \mathbf{d}$.
- $\mathbf{R_{2d+1}}$ acts by letting $\mathbf{X_{c,s+1}} = \mathbf{X_{c,s}}$ for $\mathbf{c} \leq 2\mathbf{e}$, $\mathbf{X_{c,s+1}} = \mathbf{X_{c+1,s}}$ for $\mathbf{c} \geq 2\mathbf{e} + 1$, $\tilde{\mathbf{A}_{s+1}} = \tilde{\mathbf{A}_s} \cup \mathbf{X_{2e+1,s}}$.
- $\label{eq:blk2d'+1} \begin{array}{l} \text{is set to 0 for all } d' > d. \ \text{All $Blk_{2d'} \geq 2e+1$ are} \\ \text{reset to } \max\{2e+1, 2d'+1\}. \end{array}$

A is a positively closed left-r.e. set

The requirement $\mathbf{R}_{2\langle \mathbf{d}, \mathbf{e} \rangle}$ achieves that $\psi_{\mathbf{d}}^{\mathbf{A}}$ is a left-r.e. set.

- $\mathbf{R}_{2\langle \mathbf{d}, \mathbf{e} \rangle}$ requires attention at \mathbf{s} if $\mathbf{Blk}_{2\mathbf{d}} = 2\mathbf{e} + 1$ and $\max(\mathbf{X}_{2\mathbf{e}+1,\mathbf{s}}) \leq \mathbf{s}$ and there is $\mathbf{y} \leq \mathbf{s}$ with $\psi^{\mathbf{A}_{\mathbf{s}} \cup \{\mathbf{x}:\min(\mathbf{X}_{2\mathbf{e}+1,\mathbf{s}}) \leq \mathbf{x} \leq \mathbf{s}\}}(\mathbf{y}) > \psi^{\mathbf{A}_{\mathbf{s}}}(\mathbf{y}).$
- If $R_{2\langle d,e\rangle}$ acts then $X_{2e+1,s+1}$ is the union of $X_{2c+1,s}$ for $c = e, e + 1, \dots, s$ and \tilde{A}_{s+1} it the union of \tilde{A}_s and $X_{2c+2,s}$ for $c = e, e + 1, \dots, s 1$ and $X_{c,s+1} = X_{c,s}$ for $c \leq 2e$ and $X_{c,s+1} = x_{c+(2s-2e),s}$ for $c \geq 2e + 2$.
- Blk_{2d} is updated to 2e + 3 and if $d' > d \land Blk_{2d'} > 2e + 1$ then $Blk_{2d'+1}$ is updated to $\max\{2e + 3, 2d' + 1\}$. For all d' with $Blk_{2d'+1} = 2e' + 1$, $Blk_{2d'+1}$ is updated to the value 2e'' + 1 with $X_{2e'+1,s} \subseteq X_{2e''+1,s+1}$.

4. Cohesive and r-cohesive sets

Definition [Friedberg 1958, Myhill 1956] A set A is cohesive iff A is infinite and for every r.e. set B, either $A \cap B$ or A - B is finite. A set A is r-cohesive iff A is infinite and for every recursive

set B, either $A \cap B$ or A - B is finite.

Every cohesive set is r-cohesive but not vice versa. No r.e. set is r-cohesive: If A is r.e. and infinite then A has an infinite recursive subset B which in addition satisfies that A - B is infinite.

Theorem [Soare 1969] There is a cohesive left-r.e. set.

Theorem

Every r-cohesive left-r.e. set is actually an ascending closed left-r.e. set.

R-Cohesive Left-R.E. is Asc Closed

Let A be an r-cohesive and left-r.e. and let B be ascendingly reducible to A via f. Assume that B is infinite; otherwise B is trivially a left-r.e. set. Then the range of f is infinite and recursive. Hence almost all elements of A are in the range of f, say all above u. Given a left-r.e. enumeration A_n , there is a recursive sequence n_0, n_1, \ldots such that $A_{n_0}(x) = A(x)$ for all $x \leq u$ and $A_{n_m}(x) = 1 \Rightarrow x \in range(f)$ for all $x \in \{u, u + 1, \ldots, u + m\}$. Now define

$$\mathbf{B}_{\mathbf{m}}(\mathbf{x}) = \begin{cases} A_{n_m}(f(x)) & \text{if } f(x) \le u + m; \\ 0 & \text{otherwise.} \end{cases}$$

Then the sequence of the B_m witnesses that B is a left-r.e. set: Given $y \in B_m - B_{m+1}$, then $f(y) \in A_{n_m} - A_{n_{m+1}}$ and there is an z < f(y) with $z \in A_{n_{m+1}} - A_{n_m}$. Now z > u and z = f(x) for some x. Now x < y and $x \in B_{m+1} - B_m$.

Closedness of Cohesive Sets

Theorem

There is a many-one closed left-r.e. set which is cohesive.

Theorem

There is a left-r.e. cohesive set which is not a many-one closed left-r.e. set.

Both sets are constructed using a variant of Friedberg's construction of a maximal set using e-states.

Supersets of Maximal Sets

A set **A** is maximal / r-maximal iff it is r.e. and its complement is cohesive / r-cohesive, respectively.

In the following, let a_0, a_1, \ldots be the elements of the complement of A in ascending order.

Theorem

If A is maximal and B is left-r.e. then $A\cup\{a_n:n\in B\}$ is a many-one closed left-r.e. set.

If A is only r-maximal then the B constructed this way is still ascending closed left-r.e. but might fail to be a many-one closed left-r.e. set.

5. Weakly 1-generic sets

Definition

A set A is called 1-generic iff for every partial-recursive extension function F either there are n, m with F(A(0)A(1)...A(n)) = A(0)A(1)...A(m) or there is an n such that $F(\sigma)$ is undefined for all σ extending A(0)A(1)...A(n).

A set A is called weakly 1-generic iff for every recursive extension function ${\bf F}$ there are ${\bf n}, {\bf m}$ with

 $\mathbf{F}(\mathbf{A}(\mathbf{0})\mathbf{A}(\mathbf{1})\ldots\mathbf{A}(\mathbf{n}))=\mathbf{A}(\mathbf{0})\mathbf{A}(\mathbf{1})\ldots\mathbf{A}(\mathbf{m}).$

It is known that left-r.e. sets can only be weakly 1-generic but not 1-generic.

Theorem

There is a many-one closed left-r.e. weakly 1-generic set.

6. Kolmogorov complexity

The Kolmogorov complexity $C(\sigma)$ of a string σ with respect to a universal machine U is the length of the shortest p such that $U(p) = \sigma$. If one changes the universal machine then there is the constant c such that the complexity of each string does not change more than c.

Many investigations investigate the initial segment complexity $n \mapsto C(A(0)A(1) \dots A(n))$ for sets A.

Theorem

The initial segment complexity of any ascending closed left-r.e. set A is sublinear.

Proof of Sublinearity

Given c, A can be viewed as the join of c sets B_1, B_2, \ldots, B_c and each set B_d is ascending reducible to A. Hence every B_d is left-r.e. and one now considers $A(0)A(1) \ldots A(c \cdot n - 1)$.

There is a d on which the left-r.e. approximation $B_{d,s}$ below n converges last at time t; this t can be computed from $B_d(0)B_d(1)\ldots B_d(n-1)$. Now $A(c\cdot m+b)=B_b(m)$ for all $b\in\{1,\ldots,c\}$ and all m< n, hence $A(c\cdot m+b)=B_{b,t}(m)$ for all t computed from $B_d(0)B_d(1)\ldots B_d(n-1)$. Thus the first $c\cdot n$ bits of A can be computed from d and the first n bits of B_d .

So, for every c there is a constant k with $C(A(0)A(1)\ldots A(n-1)) \leq n/c + k.$

More on Kolmogorov complexity

Theorem

Given a recursive increasing and unbounded function f there is a ascending closed left-r.e. set A with $C(A(0)A(1)\ldots A(n)) \geq n/f(n) \text{ for almost all } n.$

Theorem

Given a recursive increasing and unbounded function f there is a many-one closed left-r.e. set A with $C(A(0)A(1)\ldots A(n)) \geq n/f(n) \text{ for infinitely many } n.$

Theorem

If a set A is conjunctively closed left-r.e. or disjunctively closed left-r.e. then for every $\varepsilon > 0$ and almost all n, $C(A(0)A(1)\dots A(n)) \leq (2+\varepsilon) \cdot \log(n).$

Remark

These theorems prove also that there is a many-one closed set which is not conjunctively closed or disjunctively closed.

Summary

This talk introduced r closed left-r.e. for reducibilities r.

For sets, the implications r.e. \Rightarrow positive closed left-r.e. \Rightarrow many-one closed left-r.e. \Rightarrow ascending closed left-r.e. \Rightarrow left-r.e. hold and no arrow can be reversed.

Cohesive, r-cohesive and weakly 1-generic sets are not r.e. but can be many-one closed left-r.e.; furthermore there is an ascending closed left-r.e. set which is cohesive and not many-one closed left-r.e.; however every cohesive left-r.e. set is also an ascending closed left-r.e. set.

The initial segment complexity of ascending closed left-r.e. sets is sublinear and can be kept near to linear; for many-one closed left-r.e. sets, one can obtain such bounds infinitely often; for conjunctive / disjunctive / positive closed left-r.e. sets the bound is logarithmic.

Open Problems

Problem 1.

Are conjunctively closed left-r.e. sets also disjunctively closed left-r.e. and vice versa?

Problem 2.

The many-one closed left-r.e. sets are closed under join and many-one reducibility. Is there a greatest such degree? That is, is there is a set \tilde{K} such that A is many-one closed left-r.e. iff $A \leq_m \tilde{K}$?

Problem 3.

Is every enumeration closed left-r.e. set already an r.e. set?