
Cryptography and algorithmic randomness II

— The Generic Group Model and Effective Hardness —

Kohtaro Tadaki

Research and Development Initiative, Chuo University

Tokyo, Japan

Supported by KAKENHI (23340020), Japan Society for the Promotion of Science

1

Abstract

In modern cryptography, the generic group model (Shoup, 1997) is widely

used as an imaginary framework in which the security of a cryptographic

scheme is discussed.

In particular, the generic group model is often used to discuss the compu-

tational hardness of problems, such as the discrete logarithm problem and

the Diffie-Hellman problem, which are used as a computational hardness

assumption to prove the security of a cryptographic scheme.

In this talk, we apply the concepts and methods of algorithmic randomness

to the generic group model, and consider the secure instantiation of the

generic group, i.e., a random encoding of the group elements.

In particular, we show that the generic group can be instantiated by a

specific computable function while keeping the computational hardness of

the problems originally proved in the generic group model.

2

Abstract

In CCR 2012, we considered the secure instantiation of the random oracle.

Here, the random oracle model is more widely used than the generic group

model as an imaginary framework in which the security of a cryptographic

scheme is discussed.

In this talk, we show that the same line of research is possible for the generic

group model.

3

Computational Hardness Assumptions

4

Computational Hardness Assumptions about Groups

There are several computational hardness assumptions with respect to finite

cyclic groups to prove the security of cryptographic schemes.

• The hardness of the discrete logarithm problem

• The hardness of the computational Diffie-Hellman problem

• The hardness of the decisional Diffie-Hellman problem

•

5

Computational Hardness Assumptions about Groups

There are several computational hardness assumptions with respect to finite

cyclic groups to prove the security of cryptographic schemes.

• The hardness of the discrete logarithm problem

• The hardness of the computational Diffie-Hellman problem

• The hardness of the decisional Diffie-Hellman problem

•

6

The Discrete Logarithm Problem

7

Finite Cyclic Groups

• A group G is called cyclic if there exists g ∈ G such that

G = {gi | i ∈ Z}.

Such g is called a generator of G.

• The number of elements in a finite group G is called the order of G.

• For every finite cyclic group G and every generator g of G,

G = {g0, g1, . . . , gm−1},

where m is the order of G.

Thus, G is isomorphic to the additive group Zm by

G 3 gi 7→ i ∈ Zm,

where Zm = {0,1, . . . ,m − 1} with the binary operation ◦ for a1, a2 ∈ Zm

defined by

a1 ◦ a2 := (a1 + a2) mod m.

8

Finite Cyclic Groups

Example

Let p be a prime. Consider the set

Z∗
p := {a ∈ Zp | gcd(a, p) = 1} = {1,2, . . . , p− 1}.

This set is a group with the binary operation ◦ for a1, a2 ∈ Z∗
p defined by

a1 ◦ a2 := a1a2 mod p.

The group Z∗
p is shown to be a finite cyclic group of order p − 1. We also

see that there are φ(p − 1) generators of G, where φ is the Euler function

defined by

φ(N) := #{a ∈ ZN | gcd(a,N) = 1}.

9

Discrete Logarithm

Definition Let G be a finite cyclic group of order q and g its generator.

Then, for every h ∈ G there is a unique x ∈ Zq such that gx = h. We call

this x the discrete logarithm of h with respect to g and write

x = logg h.

Discrete logarithms obey many of the same rules as “standard” logarithms.

For example,

(i) logg 1 = 0, where 1 is the unit element of G,

(ii) logg(h1h2) = (logg h1 + logg h2) mod q.

The discrete logarithm problem is to find the discrete logarithm logg h, given

a generator g of G and an element h ∈ G. The hardness of the discrete

logarithm problem is the hardness to find the discrete logarithm.

10

Experiment for the Discrete Logarithm Problem

Let G be a finite cyclic group in a certain class.

Consider the following experiment defined for a probabilistic polynomial-

time algorithm A and a parameter n:

� �
The discrete logarithm experiment DLogA(n):

1. Generate (G, q, g), where G is a finite cyclic group of order q repre-

sented by n bit strings and g is a generator of G.

2. Generate h ∈ G uniformly.

3. A is given q, g, h and outputs x ∈ Zq

4. The output of the experiment is defined to be 1 if gx = h and 0

otherwise.

� �

11

The Hardness of the Discrete Logarithm Problem

Definition

We say that the discrete logarithm problem is hard (with respect to a cer-

tain class of finite cyclic groups) if for all probabilistic polynomial-time

algorithms A and all d ∈ N+ there exists N ∈ N+ such that, for all n > N ,

Prob[DLogA(n) = 1] ≤
1

nd
.

The hardness of the discrete logarithm problem is one of the major com-

putational hardness assumptions by which the security of cryptographic

schemes is proved.

12

The Generic Group Model

13

The Generic Algorithm

14

The Generic Algorithm: Motivation and Intuition

We want to consider group algorithms which only use the minimal properties

of group as a finite cyclic group.

The generic algorithms are generic group algorithms in the sense that they

apply equally well to all finite cyclic groups. The generic algorithms do not

relay on specific properties of a particular finite cyclic group or class of

finite cyclic groups.

To realize this, the group operations of a finite cyclic group are performed

via oracle calls by the generic algorithms, and all possible finite cyclic groups

of a given order are considered as an oracle in a randomized manner.

Thus, Shoup introduced the notion of generic algorithm in 1997.

15

Encoding Function into n Bitstrings

Definition [Encoding Function into n Bitstrings]

Let n ∈ N+ = {1,2,3, . . . }. An encoding function into n bitstrings is a
bijective function mapping Z2n = {0,1, . . . ,2n − 1} to {0,1}n.

Let N ≤ 2n.

• For every pair of finite cyclic group G of order N and its generator, there
is an encoding function σ into n bitstrings such that G is isomorphic to
ZN via σ.

• Conversely, for every encoding function σ into n bitstrings, by defining
the binary operation σ(x) ◦ σ(y) := σ(x + y) on σ(ZN), the set σ(ZN)
becomes a finite cyclic group of order N with generator σ(1) and the
set σ(ZN) is isomorphic to ZN via σ.

In this manner, there is a bijective correspondence between a pair of a finite
cyclic group G of order N and its generator, and an encoding function σ
into n bitstrings.

By choosing σ appropriately, any finite cyclic group G (with its generator)
can be represented.

16

Generic Algorithm

Definition [Generic Algorithm, Shoup 97]

A generic algorithm is a probabilistic oracle Turing machine A which be-
haves as follows:

Let n ∈ N+, and let σ be an encoding function into n bitstrings and N
a positive integer with N ≤ 2n.

(i) A takes as input a list σ(x1), . . . , σ(xk) with x1, . . . , xk ∈ ZN , as well as
(the binary representations of) N and its prime factorization.

(ii) As A is executed, it is allowed to make calls to oracles which compute
the functions add : σ(ZN) × σ(ZN) → σ(ZN) and inv : σ(ZN) → σ(ZN)
with

add(σ(x), σ(y)) = σ(x+ y) and inv(σ(x)) = σ(−x).

The algorithm A do not perform these operations internally by itself.

(iii) Eventually, A halts and outputs a finite binary string, denoted by

A(N ;σ(x1), . . . , σ(xk)).

17

The Discrete Logarithm Problem

in the Generic Group Model

18

Experiment for the Discrete Logarithm Problem A

Consider the following experiment defined for a polynomial-time generic

algorithm A, a parameter n, and a positive integer N ≤ 2n:

� �
The discrete logarithm experiment DLogA(n,N):

1. Generate an encoding function σ into n bitstrings uniformly.

2. Generate x ∈ ZN uniformly.

3. The output of the experiment is defined to be 1 if

A(N ;σ(1), σ(x)) = x

σ(1) is a generator of the finite cyclic group σ(ZN) of order N , and

x is the discrete logarithm of σ(x) with respect to σ(1).

and 0 otherwise.

� �

19

The Hardness of the Discrete Logarithm Problem A

Theorem [Shoup 97]

There exists C ∈ N+ such that, for every generic algorithm A, n ∈ N+, and

N with N ≤ 2n,

Prob[DLogA(n,N) = 1] ≤
Cm2

p
,

where p is the largest prime divisor of N and m is the maximum number of

the oracle queries among all the computation paths of A.

If we insist that A succeed with probability bounded by a positive constant

(e.g., 1/2) to the below, this theorem translates into a lower bound Ω(
√
p)

of the number of group operations queried by A.

20

Translating Shoup’s result into the form

well used as a computational assumption

21

Experiment for the Discrete Logarithm Problem B

Consider the following experiment for a polynomial-time generic algorithm

A, a parameter n, and an encoding function σ into n bitstrings:

� �
The discrete logarithm experiment DLogA(n, σ):

1. Generate an n-bit prime p uniformly.

2. Generate x ∈ Zp uniformly.

3. The output of the experiment is defined to be 1 if

A(p;σ(1), σ(x)) = x

and 0 otherwise.

� �

22

The Hardness of the Discrete Logarithm Problem B

The hardness of the discrete logarithm problem in the generic group model

is then formulated as follows.

Definition We say that the discrete logarithm problem is hard in the generic

group model if for all polynomial-time generic algorithms A and all d ∈ N+

there exists N ∈ N+ such that, for all n > N ,

1

#Encfn

∑
σ∈Encfn

Prob[DLogA(n, σ) = 1] ≤
1

nd
,

where Encfn is the set of all encoding functions into n bitstrings.

Note that the probability is averaged over all encoding functions into n bit-

strings. This results in a random encoding function into n bitstrings, i.e.,

the generic group.

Theorem The discrete logarithm problem is hard in the generic group

model.
23

Our aim is the secure instantiation of the generic group.

For that purpose, we translate Shoup’s result into a stronger
computational hardness.

24

To put it plainly, the content of this research is, in essence,
to perform computable analysis over cryptography.

25

The Effective Hardness of the Discrete Logarithm Problem

In this talk we consider a stronger notion of the hardness of the discrete

logarithm problem. This stronger notion, called the effective hardness of

the discrete logarithm problem, is defined as follows:

We first choose a particular recursive enumeration A1,A2,A3, . . . of all

polynomial-time generic algorithms. It is easy to show that such an enu-

meration exists.

The effective hardness of the discrete logarithm problem in the generic

group model is then formulated as follows.

Definition We say that the discrete logarithm problem is effectively hard in

the generic group model if there exists a computable function f : N+×N+ →
N+ such that, for all i, d, n ∈ N+, if n ≥ f(i, d) then

1

#Encfn

∑
σ∈Encfn

Prob[DLogAi
(n, σ) = 1] ≤

1

nd
.

26

Effective Hardness ?

In the definitions of the (conventional) hardness of the discrete logarithm

problem, the number N is only required to exist, depending on an adversary

A and a number d, that is, the success probability of the attack by an

adversary A on a security parameter n is required to be less than 1/nd for

all sufficiently large n, where the lower bound of such n is not required to

be computable from A and d.

On the other hand, in the definitions of the effective hardness of the

discrete logarithm problem, it is required that the lower bound N of such n

can be computed from the code of A and d.

Definition [posted again]

We say that the discrete logarithm problem is hard in the generic group

model if for all polynomial-time generic algorithms A and all d ∈ N+ there

exists N ∈ N+ such that, for all n > N ,

1

#Encfn

∑
σ∈Encfn

Prob[DLogA(n, σ) = 1] ≤
1

nd
.

27

Effective Hardness ?

In modern cryptography based on computational security, it is important

to choose the security parameter n of a cryptographic scheme as small as

possible to the extent that the security requirements are satisfied, in order

to make the efficiency of the scheme as high as possible.

For that purpose, it is desirable to be able to calculate a concrete

value of N , given the code of A and d, since N gives a lower bound of the

security parameter for which the security requirements specified by A and

d are satisfied. This results in the notion of effective hardness.

Definition [posted again]

We say that the discrete logarithm problem is hard in the generic group

model if for all polynomial-time generic algorithms A and all d ∈ N+ there

exists N ∈ N+ such that, for all n > N ,

1

#Encfn

∑
σ∈Encfn

Prob[DLogA(n, σ) = 1] ≤
1

nd
.

28

The Effective Hardness of the Discrete Logarithm Problem

Definition [posted again]

We say that the discrete logarithm problem is effectively hard in the generic

group model if there exists a computable function f : N+ × N+ → N+ such

that, for all i, d, n ∈ N+, if n ≥ f(i, d) then

1

#Encfn

∑
σ∈Encfn

Prob[DLogAi
(n, σ) = 1] ≤

1

nd
.

Shoup’s result can be translated into the following stronger form:

Theorem The discrete logarithm problem is effectively hard in the generic

group model.

29

Applying algorithmic randomness together with the effec-
tive hardness, we securely instantiate the generic group
by a computable function.

30

Application of

Algorithmic Randomness

31

Lebesgue Measure on Families of Encoding Functions

Encfn: The set of all encoding functions σ into n bitstrings.

Encf∞: The set of all families of encoding functions, i.e.,

Encf∞ :=
∞∏

k=1

Encfk = Encf1 × Encf2 × Encf3 × · · · · · · .

Encf∗: The set of all finite families of encoding functions, i.e.,

Encf∗ :=
∞∪

n=0

 n∏
k=1

Encfk

 .

L: Lebesgue measure on Encf∞

Theorem [generalization of Exercise 1.9.21 of Nies’s textbook] Let S be

an r.e. subset of Encf∗. Suppose that L
(
[S]≺

)
< 1 and L

(
[S]≺

)
is a com-

putable real. Then there exists a computable family of encoding functions
which is not in [S]≺.

32

Secure Instantiation of
the Generic Group

33

Secure Instantiation by computable Function

The hardness of the discrete logarithm problem relative to a specific family

of encoding functions is defined as follows.

Definition Let {σn}n∈N+ be a family of encoding functions. We say

that the discrete logarithm problem is hard relative to {σn}n∈N+ if for all

polynomial-time generic algorithms A and all d ∈ N+ there exists N ∈ N+

such that, for all n > N ,

Prob[DLogA(n, σn) = 1] ≤
1

nd
.

Theorem [Main Result] There exists a computable family of encoding

functions relative to which the discrete logarithm problem is effectively

hard.

34

Furure Direction

It would be challenging to prove the following conjecture (or its appropri-

ate modification) with identifying an appropriate computational assumption

COMP which seems weaker than the hardness of the discrete logarithm prob-

lem itself. Here the notion of effective hardness is replaced by the notion

of polynomial-time effective hardness.

Conjecture

Under the assumption COMP, there exists a polynomial-time computable

family of encoding functions (or a polynomial-time computable family of

families of encoding functions) relative to which the discrete logarithm

problem is polynomial-time effectively hard.

The conjecture states that the discrete logarithm problem is hard in the

standard model for some polynomial-time computable finite cyclic group.

35

