Nonstandard Models of Arithmetic and Ramsey Theorem

Yang Yue

Department of Mathematics National University of Singapore

September 23, 2013

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- This talk is on Combinatorics, Computability and Reverse Mathematics.
- Motivations: Comparing relative strength of combinatorial principles; and study their logical consequences.
- The combinatorial principles in this talk will be related to Ramsey's Theorem.
- The strength and logical consequences are related to Computability and Reverse Math.

(日) (日) (日) (日) (日) (日) (日)

- This talk is on Combinatorics, Computability and Reverse Mathematics.
- Motivations: Comparing relative strength of combinatorial principles; and study their logical consequences.
- The combinatorial principles in this talk will be related to Ramsey's Theorem.
- The strength and logical consequences are related to Computability and Reverse Math.

(日) (日) (日) (日) (日) (日) (日)

- This talk is on Combinatorics, Computability and Reverse Mathematics.
- Motivations: Comparing relative strength of combinatorial principles; and study their logical consequences.
- The combinatorial principles in this talk will be related to Ramsey's Theorem.
- The strength and logical consequences are related to Computability and Reverse Math.

(ロ) (同) (三) (三) (三) (○) (○)

- This talk is on Combinatorics, Computability and Reverse Mathematics.
- Motivations: Comparing relative strength of combinatorial principles; and study their logical consequences.
- The combinatorial principles in this talk will be related to Ramsey's Theorem.
- The strength and logical consequences are related to Computability and Reverse Math.

Theorem (Ramsey (1930))

Any $f : [\mathbb{N}]^n \to \{0, 1, \dots, k-1\}$ has an infinite homogeneous set $H \subseteq \mathbb{N}$, namely, f is constant on $[H]^n$.

We will loosely refer such an infinite homogeneous set as a "solution".

Notation: The version above is denoted by RT_k^n .

Our main focus is on RT_2^2 – Ramsey's Theorem for Pairs.

(日) (日) (日) (日) (日) (日) (日)

Theorem (Ramsey (1930))

Any $f : [\mathbb{N}]^n \to \{0, 1, \dots, k-1\}$ has an infinite homogeneous set $H \subseteq \mathbb{N}$, namely, f is constant on $[H]^n$.

We will loosely refer such an infinite homogeneous set as a "solution".

Notation: The version above is denoted by RT_k^n .

Our main focus is on RT_2^2 – Ramsey's Theorem for Pairs.

Theorem (Ramsey (1930))

Any $f : [\mathbb{N}]^n \to \{0, 1, \dots, k-1\}$ has an infinite homogeneous set $H \subseteq \mathbb{N}$, namely, f is constant on $[H]^n$.

We will loosely refer such an infinite homogeneous set as a "solution".

Notation: The version above is denoted by RT_k^n .

Our main focus is on RT_2^2 – Ramsey's Theorem for Pairs.

Theorem (Ramsey (1930))

Any $f : [\mathbb{N}]^n \to \{0, 1, \dots, k-1\}$ has an infinite homogeneous set $H \subseteq \mathbb{N}$, namely, f is constant on $[H]^n$.

We will loosely refer such an infinite homogeneous set as a "solution".

Notation: The version above is denoted by RT_k^n .

Our main focus is on RT_2^2 – Ramsey's Theorem for Pairs.

(日)(1)<

Theorem (Ramsey (1930))

Any $f : [\mathbb{N}]^n \to \{0, 1, \dots, k-1\}$ has an infinite homogeneous set $H \subseteq \mathbb{N}$, namely, f is constant on $[H]^n$.

We will loosely refer such an infinite homogeneous set as a "solution".

Notation: The version above is denoted by RT_k^n .

Our main focus is on RT_2^2 – Ramsey's Theorem for Pairs.

First step: Find an infinite subset C ⊆ ω on which f is "stable", i.e., for all x, lim _{y∈C,y→∞} f(x, y) exists.

(日) (日) (日) (日) (日) (日) (日)

■ We call such a set *C cohesive* for *f*.

Second step: One of $D^R = \{x \in C : x \text{ is "eventually red"}\}$ and $D^B = \{x \in C : x \text{ is "eventually blue"}\}$ must be infinite, say D^R .

First step: Find an infinite subset C ⊆ ω on which f is "stable", i.e., for all x, lim _{y∈C,y→∞} f(x, y) exists.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

■ We call such a set *C* cohesive for *f*.

Second step: One of $D^R = \{x \in C : x \text{ is "eventually red"}\}$ and $D^B = \{x \in C : x \text{ is "eventually blue"}\}$ must be infinite, say D^R .

■ First step: Find an infinite subset C ⊆ ω on which f is "stable", i.e., for all x, lim _{y∈C,y→∞} f(x, y) exists.

(日) (日) (日) (日) (日) (日) (日)

■ We call such a set *C* cohesive for *f*.

Second step: One of $D^R = \{x \in C : x \text{ is "eventually red"}\}$ and $D^B = \{x \in C : x \text{ is "eventually blue"}\}$ must be infinite, say D^R .

■ First step: Find an infinite subset C ⊆ ω on which f is "stable", i.e., for all x, lim _{y∈C,y→∞} f(x, y) exists.

(日) (日) (日) (日) (日) (日) (日)

■ We call such a set *C* cohesive for *f*.

Second step: One of $D^R = \{x \in C : x \text{ is "eventually red"}\}$ and $D^B = \{x \in C : x \text{ is "eventually blue"}\}$ must be infinite, say D^R .

We extract two combinatorial principles out of the proof:

■ Let *R* be an infinite set and $R^s = \{t | (s, t) \in R\}$. A set *G* is said to be *R*-cohesive if for all *s*, either $G \cap R^s$ is finite or $G \cap \overline{R^s}$ is finite.

■ The cohesive principle COH states that for every *R*, there is an infinite *G* that is *R*-cohesive.

SRT²₂ states that every *stable* coloring of pairs has a solution.

■ (Cholak, Jockusch and Slaman, 2001)

$$\mathsf{RT}_2^2 = \mathsf{COH} + \mathsf{SRT}_2^2.$$

We extract two combinatorial principles out of the proof:

- Let *R* be an infinite set and $R^s = \{t | (s, t) \in R\}$. A set *G* is said to be *R*-cohesive if for all *s*, either $G \cap R^s$ is finite or $G \cap \overline{R^s}$ is finite.
- The cohesive principle COH states that for every *R*, there is an infinite *G* that is *R*-cohesive.

SRT²₂ states that every *stable* coloring of pairs has a solution.

(Cholak, Jockusch and Slaman, 2001)

$$\mathsf{RT}_2^2 = \mathsf{COH} + \mathsf{SRT}_2^2.$$

We extract two combinatorial principles out of the proof:

- Let *R* be an infinite set and $R^s = \{t | (s, t) \in R\}$. A set *G* is said to be *R*-cohesive if for all *s*, either $G \cap R^s$ is finite or $G \cap \overline{R^s}$ is finite.
- The cohesive principle COH states that for every *R*, there is an infinite *G* that is *R*-cohesive.
- SRT²₂ states that every *stable* coloring of pairs has a solution.
- (Cholak, Jockusch and Slaman, 2001)

$$\mathsf{RT}_2^2 = \mathsf{COH} + \mathsf{SRT}_2^2.$$

We extract two combinatorial principles out of the proof:

- Let *R* be an infinite set and $R^s = \{t | (s, t) \in R\}$. A set *G* is said to be *R*-cohesive if for all *s*, either $G \cap R^s$ is finite or $G \cap \overline{R^s}$ is finite.
- The cohesive principle COH states that for every *R*, there is an infinite *G* that is *R*-cohesive.
- SRT²₂ states that every *stable* coloring of pairs has a solution.
- (Cholak, Jockusch and Slaman, 2001)

$$\mathsf{RT}_2^2 = \mathsf{COH} + \mathsf{SRT}_2^2.$$

How complicated is the homogeneous set H?

- Is COH or SRT_2^2 as strong as RT_2^2 ?
- What are the logical consequences/strength of Ramsey's Theorem?
- We need to introduce hierarchies of first- and second-order arithmetic.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- How complicated is the homogeneous set H?
- Is COH or SRT²₂ as strong as RT²₂?
- What are the logical consequences/strength of Ramsey's Theorem?
- We need to introduce hierarchies of first- and second-order arithmetic.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- How complicated is the homogeneous set H?
- Is COH or SRT²₂ as strong as RT²₂?
- What are the logical consequences/strength of Ramsey's Theorem?
- We need to introduce hierarchies of first- and second-order arithmetic.

(日) (日) (日) (日) (日) (日) (日)

- How complicated is the homogeneous set H?
- Is COH or SRT²₂ as strong as RT²₂?
- What are the logical consequences/strength of Ramsey's Theorem?
- We need to introduce hierarchies of first- and second-order arithmetic.

(ロ) (同) (三) (三) (三) (○) (○)

Language of first order Peano Arithmetic: 0, S, +, ×, <; variables and quantifiers are intended for individuals.

- Formulas are classified by the number of alternating blocks of quantifiers: Σ_n^0 and Π_n^0 . (We always allow parameters.)
- We often talk about Δ_n^0 formulas which have two equivalent forms, one Σ_n^0 , one Π_n^0 .
- Definable sets are classified by their defining formulas.
- (Slogan: "Computability is Definability": Recursive= Δ_1^0 , and recursively enumerable sets = Σ_1^0 sets etc.)

- Language of first order Peano Arithmetic: 0, S, +, ×, <; variables and quantifiers are intended for individuals.
- Formulas are classified by the number of alternating blocks of quantifiers: Σ_n^0 and Π_n^0 . (We always allow parameters.)
- We often talk about Δ_n^0 formulas which have two equivalent forms, one Σ_n^0 , one Π_n^0 .
- Definable sets are classified by their defining formulas.
- (Slogan: "Computability is Definability": Recursive= Δ_1^0 , and recursively enumerable sets = Σ_1^0 sets etc.)

- Language of first order Peano Arithmetic: 0, S, +, ×, <; variables and quantifiers are intended for individuals.
- Formulas are classified by the number of alternating blocks of quantifiers: Σ_n^0 and Π_n^0 . (We always allow parameters.)
- We often talk about Δ_n^0 formulas which have two equivalent forms, one Σ_n^0 , one Π_n^0 .
- Definable sets are classified by their defining formulas.
- (Slogan: "Computability is Definability": Recursive= Δ_1^0 , and recursively enumerable sets = Σ_1^0 sets etc.)

- Language of first order Peano Arithmetic: 0, S, +, ×, <; variables and quantifiers are intended for individuals.
- Formulas are classified by the number of alternating blocks of quantifiers: Σ_n^0 and Π_n^0 . (We always allow parameters.)
- We often talk about Δ_n^0 formulas which have two equivalent forms, one Σ_n^0 , one Π_n^0 .
- Definable sets are classified by their defining formulas.
- (Slogan: "Computability is Definability": Recursive= Δ_1^0 , and recursively enumerable sets = Σ_1^0 sets etc.)

- Language of first order Peano Arithmetic: 0, S, +, ×, <; variables and quantifiers are intended for individuals.
- Formulas are classified by the number of alternating blocks of quantifiers: Σ_n^0 and Π_n^0 . (We always allow parameters.)
- We often talk about Δ_n^0 formulas which have two equivalent forms, one Σ_n^0 , one Π_n^0 .
- Definable sets are classified by their defining formulas.
- Slogan: "Computability is Definability": Recursive=Δ₁⁰, and recursively enumerable sets = Σ₁⁰ sets etc.)

Fragments of First Order Peano Arithmetic

- Let $I\Sigma_n$ denote the induction schema for Σ_n^0 -formulas; and $B\Sigma_n$ denote the Bounding Principle for Σ_n^0 formulas.
- (Kirby and Paris, 1977) $\cdots \Rightarrow I\Sigma_{n+1} \Rightarrow B\Sigma_{n+1} \Rightarrow I\Sigma_n \Rightarrow \dots$

(日) (日) (日) (日) (日) (日) (日)

- (Slaman, 2004) $I\Delta_n \Leftrightarrow B\Sigma_n$.
- (Note: When n = 1 we require the language has exponential function.)

Let $I\Sigma_n$ denote the induction schema for Σ_n^0 -formulas; and $B\Sigma_n$ denote the Bounding Principle for Σ_n^0 formulas.

• (Kirby and Paris, 1977) $\cdots \Rightarrow I\Sigma_{n+1} \Rightarrow B\Sigma_{n+1} \Rightarrow I\Sigma_n \Rightarrow \dots$

(日) (日) (日) (日) (日) (日) (日)

(Slaman, 2004) $I\Delta_n \Leftrightarrow B\Sigma_n$.

(Note: When n = 1 we require the language has exponential function.)

- Let $I\Sigma_n$ denote the induction schema for Σ_n^0 -formulas; and $B\Sigma_n$ denote the Bounding Principle for Σ_n^0 formulas.
- (Kirby and Paris, 1977) $\cdots \Rightarrow I \Sigma_{n+1} \Rightarrow B \Sigma_{n+1} \Rightarrow I \Sigma_n \Rightarrow \dots$

(日) (日) (日) (日) (日) (日) (日)

- (Slaman, 2004) $I\Delta_n \Leftrightarrow B\Sigma_n$.
- (Note: When n = 1 we require the language has exponential function.)

- Let $I\Sigma_n$ denote the induction schema for Σ_n^0 -formulas; and $B\Sigma_n$ denote the Bounding Principle for Σ_n^0 formulas.
- (Kirby and Paris, 1977) $\cdots \Rightarrow I \Sigma_{n+1} \Rightarrow B \Sigma_{n+1} \Rightarrow I \Sigma_n \Rightarrow \dots$

- (Slaman, 2004) $I\Delta_n \Leftrightarrow B\Sigma_n$.
- (Note: When n = 1 we require the language has exponential function.)

- Two-sorted language: (first order part) + variables and quantifiers for sets.
- RCA₀: Σ_1^0 -induction and Δ_1^0 -comprehension: For $\varphi \in \Delta_1^0$, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- WKL₀: RCA₀ and every infinite binary tree has an infinite path.
- ACA₀: RCA₀ and for φ arithmetical, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.

(日) (日) (日) (日) (日) (日) (日)

- Two-sorted language: (first order part) + variables and quantifiers for sets.
- RCA₀: Σ_1^0 -induction and Δ_1^0 -comprehension: For $\varphi \in \Delta_1^0$, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- WKL₀: RCA₀ and every infinite binary tree has an infinite path.
- ACA₀: RCA₀ and for φ arithmetical, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.

(ロ) (同) (三) (三) (三) (○) (○)

- Two-sorted language: (first order part) + variables and quantifiers for sets.
- RCA₀: Σ_1^0 -induction and Δ_1^0 -comprehension: For $\varphi \in \Delta_1^0$, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- WKL₀: RCA₀ and every infinite binary tree has an infinite path.
- ACA₀: RCA₀ and for φ arithmetical, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.

- Two-sorted language: (first order part) + variables and quantifiers for sets.
- RCA₀: Σ_1^0 -induction and Δ_1^0 -comprehension: For $\varphi \in \Delta_1^0$, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- WKL₀: RCA₀ and every infinite binary tree has an infinite path.
- ACA₀: RCA₀ and for φ arithmetical, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.

- Two-sorted language: (first order part) + variables and quantifiers for sets.
- RCA₀: Σ_1^0 -induction and Δ_1^0 -comprehension: For $\varphi \in \Delta_1^0$, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- WKL₀: RCA₀ and every infinite binary tree has an infinite path.
- ACA₀: RCA₀ and for φ arithmetical, $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$.
- (ATR₀ and Π_1^1 -CA₀.) Π_1^1 -formulas are of the form $\forall X\varphi$ where φ is arithmetical.

Remarks on Axioms in Reverse Math

They all assert the existence of certain sets.

- Some are measured by syntactical complexity, e.g. RCA₀ or ACA₀.
- Some are from the analysis of mathematical tools, e.g. WKL₀ corresponds to Compactness Theorem.

Remarks on Axioms in Reverse Math

- They all assert the existence of certain sets.
- Some are measured by syntactical complexity, e.g. RCA₀ or ACA₀.

Some are from the analysis of mathematical tools, e.g. WKL₀ corresponds to Compactness Theorem.

(ロ) (同) (三) (三) (三) (○) (○)

Remarks on Axioms in Reverse Math

- They all assert the existence of certain sets.
- Some are measured by syntactical complexity, e.g. RCA₀ or ACA₀.
- Some are from the analysis of mathematical tools, e.g. WKL₀ corresponds to Compactness Theorem.

(ロ) (同) (三) (三) (三) (○) (○)

- A model *M* of second-order arithmetic consists (*M*, 0, *S*, +, ×, <, *X*) where (*M*, 0, *S*, +, ×, <) is its first-order part and the set variables are interpreted as members of *X*.
- Models of RCA₀: Its second-order part is closed under ≤_T and Turing join, namely a *Turing ideal*.
- In the (minimal) model of RCA₀, *X* only consists of *M*-recursive sets.
- (RCA₀ is the place to do constructive/finitary mathematics.)

- A model *M* of second-order arithmetic consists (*M*, 0, *S*, +, ×, <, *X*) where (*M*, 0, *S*, +, ×, <) is its first-order part and the set variables are interpreted as members of *X*.
- Models of RCA₀: Its second-order part is closed under ≤_T and Turing join, namely a *Turing ideal*.
- In the (minimal) model of RCA₀, X only consists of *M*-recursive sets.
- (RCA₀ is the place to do constructive/finitary mathematics.)

- A model *M* of second-order arithmetic consists (*M*, 0, *S*, +, ×, <, *X*) where (*M*, 0, *S*, +, ×, <) is its first-order part and the set variables are interpreted as members of *X*.
- Models of RCA₀: Its second-order part is closed under ≤_T and Turing join, namely a *Turing ideal*.
- In the (minimal) model of RCA₀, X only consists of M-recursive sets.
- (RCA₀ is the place to do constructive/finitary mathematics.)

- A model *M* of second-order arithmetic consists (*M*, 0, *S*, +, ×, <, *X*) where (*M*, 0, *S*, +, ×, <) is its first-order part and the set variables are interpreted as members of *X*.
- Models of RCA₀: Its second-order part is closed under ≤_T and Turing join, namely a *Turing ideal*.
- In the (minimal) model of RCA₀, X only consists of M-recursive sets.
- (RCA₀ is the place to do constructive/finitary mathematics.)

- Goal of Reverse Mathematics: What set existence axioms are needed to prove the theorems of ordinary, classical (countable) mathematics?
- Goal of Reverse Recursion Theory: What amount of induction are needed to prove the theorems of Recursion Theory, in particular, theorems about r.e. degrees.
- Motivation: To achieve these goals, we have to discover new proofs.

- Goal of Reverse Mathematics: What set existence axioms are needed to prove the theorems of ordinary, classical (countable) mathematics?
- Goal of Reverse Recursion Theory: What amount of induction are needed to prove the theorems of Recursion Theory, in particular, theorems about r.e. degrees.
- Motivation: To achieve these goals, we have to discover new proofs.

- Goal of Reverse Mathematics: What set existence axioms are needed to prove the theorems of ordinary, classical (countable) mathematics?
- Goal of Reverse Recursion Theory: What amount of induction are needed to prove the theorems of Recursion Theory, in particular, theorems about r.e. degrees.
- Motivation: To achieve these goals, we have to discover new proofs.

Question: Suppose f is recursive. What is the minimal syntactical complexity of a solution?

- Question: Which system in Reverse Mathematics does Ramsey's Theorem correspond? E.g., does RT²₂ imply ACA₀?
- What are the first-order consequences of Ramsey's Theorem? E.g., does RT²₂ imply *I*Σ₂?
- Does SRT²₂ imply RT²₂? In other words, if X contains solutions for all stable colorings, how about for general colorings?

Question: Suppose f is recursive. What is the minimal syntactical complexity of a solution?

Question: Which system in Reverse Mathematics does Ramsey's Theorem correspond? E.g., does RT²₂ imply ACA₀?

What are the first-order consequences of Ramsey's Theorem? E.g., does RT²₂ imply *I*Σ₂?

Does SRT²₂ imply RT²₂? In other words, if X contains solutions for all stable colorings, how about for general colorings?

- Question: Suppose f is recursive. What is the minimal syntactical complexity of a solution?
- Question: Which system in Reverse Mathematics does Ramsey's Theorem correspond? E.g., does RT²₂ imply ACA₀?
- What are the first-order consequences of Ramsey's Theorem? E.g., does RT²₂ imply *I*Σ₂?
- Does SRT² imply RT²? In other words, if X contains solutions for all stable colorings, how about for general colorings?

- Question: Suppose f is recursive. What is the minimal syntactical complexity of a solution?
- Question: Which system in Reverse Mathematics does Ramsey's Theorem correspond? E.g., does RT²₂ imply ACA₀?
- What are the first-order consequences of Ramsey's Theorem? E.g., does RT²₂ imply *I*Σ₂?
- Does SRT²₂ imply RT²₂? In other words, if X contains solutions for all stable colorings, how about for general colorings?

Theorem (Jockusch, 1972)

- **1** Every recursive coloring f has a Π_2^0 solution.
- 2 There is a recursive $f : [\mathbb{N}]^3 \to \{0, 1\}$ all of whose solutions compute 0'.
- 3 There is a recursive coloring of pairs which has no Σ_2^0 solutions.

Corollary

Over RCA₀,

$$\begin{split} & \mathsf{ACA}_0 \Leftrightarrow \mathsf{RT}_2^3 \Leftrightarrow \mathsf{RT}_k^n.\\ & \mathsf{ACA}_0 \Rightarrow \mathsf{RT}_2^2 \ \text{ and } \ \mathsf{WKL}_0 \not\Rightarrow \mathsf{RT}_2^2. \end{split}$$

Theorem (Jockusch, 1972)

- **1** Every recursive coloring f has a Π_2^0 solution.
- 2 There is a recursive $f : [\mathbb{N}]^3 \to \{0, 1\}$ all of whose solutions compute 0'.

3 There is a recursive coloring of pairs which has no Σ_2^0 solutions.

Corollary

Over RCA0,

$$\begin{split} & \mathsf{ACA}_0 \Leftrightarrow \mathsf{RT}_2^3 \Leftrightarrow \mathsf{RT}_k^n.\\ & \mathsf{ACA}_0 \Rightarrow \mathsf{RT}_2^2 \ \text{ and } \ \mathsf{WKL}_0 \not\Rightarrow \mathsf{RT}_2^2. \end{split}$$

Theorem (Jockusch, 1972)

- **1** Every recursive coloring f has a Π_2^0 solution.
- 2 There is a recursive $f : [\mathbb{N}]^3 \to \{0, 1\}$ all of whose solutions compute 0'.
- 3 There is a recursive coloring of pairs which has no Σ_2^0 solutions.

Corollary

Over RCA₀, AC

 $\mathsf{ACA}_0 \Rightarrow \mathsf{RT}_2^2$ and $\mathsf{WKL}_0 \Rightarrow \mathsf{RT}_2^2$

Theorem (Jockusch, 1972)

- **1** Every recursive coloring f has a Π_2^0 solution.
- 2 There is a recursive $f : [\mathbb{N}]^3 \to \{0, 1\}$ all of whose solutions compute 0'.
- 3 There is a recursive coloring of pairs which has no Σ_2^0 solutions.

Corollary

Over RCA₀,

$$\begin{split} & \mathsf{ACA}_0 \Leftrightarrow \mathsf{RT}_2^3 \Leftrightarrow \mathsf{RT}_k^n.\\ & \mathsf{ACA}_0 \Rightarrow \mathsf{RT}_2^2 \quad \textit{and} \quad \mathsf{WKL}_0 \neq \mathsf{RT}_2^2. \end{split}$$

Theorem (Hirst (1987))

Over RCA₀,

$$(\mathsf{S})\mathsf{RT}_2^2 \Rightarrow B\Sigma_2.$$

(This tells us a lower bound of its first order strength.)

Theorem (Seetapun and Slaman 1995)

There is a Turing ideal J such that $0' \notin J$ and for every $f : [\mathbb{N}]^2 \to \{0, 1\}$ in J, there is a solution in J.

Corollary

Over RCA₀,

 $(ACA_0 \Rightarrow RT_2^2 \text{ and}) RT_2^2 \Rightarrow ACA_0.$

Theorem (Hirst (1987))

Over RCA₀,

$$(\mathsf{S})\mathsf{RT}_2^2 \Rightarrow B\Sigma_2.$$

(This tells us a lower bound of its first order strength.)

Theorem (Seetapun and Slaman 1995)

There is a Turing ideal J such that $0' \notin J$ and for every $f : [\mathbb{N}]^2 \to \{0, 1\}$ in J, there is a solution in J.

Corollary

Over RCA₀,

 $(ACA_0 \Rightarrow RT_2^2 \text{ and}) RT_2^2 \Rightarrow ACA_0.$

Theorem (Hirst (1987))

Over RCA₀,

$$(\mathsf{S})\mathsf{RT}_2^2 \Rightarrow B\Sigma_2.$$

(This tells us a lower bound of its first order strength.)

Theorem (Seetapun and Slaman 1995)

There is a Turing ideal J such that $0' \notin J$ and for every $f : [\mathbb{N}]^2 \to \{0, 1\}$ in J, there is a solution in J.

Corollary

Over RCA₀,

$$(\mathsf{ACA}_0 \Rightarrow \mathsf{RT}_2^2 \quad \textit{and}) \quad \mathsf{RT}_2^2 \not\Rightarrow \mathsf{ACA}_0.$$

Harrington observed that WKL₀ is Π¹₁-conservative over RCA₀. i.e., any Π¹₁-statement that is provable in WKL₀ is already provable in RCA₀.

Conservation results are used to measure the weakness of the strength of a theorem.

Theorem (Cholak, Jochusch and Slaman (2001))

 RT_2^2 is Π_1^1 -conservative over $RCA_0 + I\Sigma_2$.

Corollary

Over RCA₀,

 $(\mathsf{RT}_2^2 \Rightarrow B\Sigma_2 \text{ and}) \ \mathsf{RT}_2^2 \Rightarrow I\Sigma_3.$

- Harrington observed that WKL₀ is Π¹₁-conservative over RCA₀. i.e., any Π¹₁-statement that is provable in WKL₀ is already provable in RCA₀.
- Conservation results are used to measure the weakness of the strength of a theorem.

Theorem (Cholak, Jochusch and Slaman (2001))

 RT_2^2 is Π_1^1 -conservative over $RCA_0 + I\Sigma_2$.

Corollary

Over RCA₀

 $(\mathsf{RT}_2^2 \Rightarrow B\Sigma_2 \text{ and}) \ \mathsf{RT}_2^2 \Rightarrow I\Sigma_3.$

- Harrington observed that WKL₀ is Π¹₁-conservative over RCA₀. i.e., any Π¹₁-statement that is provable in WKL₀ is already provable in RCA₀.
- Conservation results are used to measure the weakness of the strength of a theorem.

Theorem (Cholak, Jochusch and Slaman (2001))

 RT_2^2 is Π_1^1 -conservative over $RCA_0 + I\Sigma_2$.

Corollary

Over RCA0,

$$(\mathsf{RT}_2^2 \Rightarrow B\Sigma_2 \text{ and}) \mathsf{RT}_2^2 \neq I\Sigma_3.$$

- Harrington observed that WKL₀ is Π¹₁-conservative over RCA₀. i.e., any Π¹₁-statement that is provable in WKL₀ is already provable in RCA₀.
- Conservation results are used to measure the weakness of the strength of a theorem.

Theorem (Cholak, Jochusch and Slaman (2001))

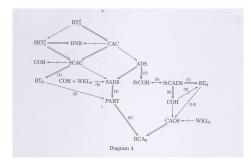
 RT_2^2 is Π_1^1 -conservative over $RCA_0 + I\Sigma_2$.

Corollary

Over RCA₀,

$$(\mathsf{RT}_2^2 \Rightarrow B\Sigma_2 \text{ and}) \ \mathsf{RT}_2^2 \neq I\Sigma_3.$$

Hirschfeldt and Shore [2007], *Combinatorial principles weaker than Ramsey's theorem for pairs.*



・ロット (雪) (日) (日)

э

In particular, COH does not imply RT₂².

Theorem (Jiayi Liu (2011))

Over RCA₀,

 $\text{RT}_2^2 \not\Rightarrow \text{WKL}_0.$

(日) (日) (日) (日) (日) (日) (日)

Theorem (Chong, Slaman and Y (2012))

Over RCA₀, COH *is* Π_1^1 *-conservative over* RCA₀ + $B\Sigma_2$.

Theorem (Jiayi Liu (2011))

Over RCA₀,

 $\text{RT}_2^2 \not\Rightarrow \text{WKL}_0.$

(日) (日) (日) (日) (日) (日) (日)

Theorem (Chong, Slaman and Y (2012))

Over RCA₀, COH is Π_1^1 -conservative over RCA₀ + $B\Sigma_2$.

Question 1: Over RCA₀, does SRT²₂ imply RT²₂?

- Question 2: Does SRT_2^2 imply $I\Sigma_2$? How about RT_2^2 ?
- Attempt for Q 1: Show that stable colorings always have a low solution. Or equivalently, every Δ₂⁰-set contains or is disjoint from an infinite low set.

Theorem (Downey, Hirschfeldt, Lempp and Solomon (2001))

There is a Δ_2^0 set D such that neither D nor \overline{D} contains infinite low subset.

Question 1: Over RCA₀, does SRT²₂ imply RT²₂?

Question 2: Does SRT²₂ imply IΣ₂? How about RT²₂?

Attempt for Q 1: Show that stable colorings always have a low solution. Or equivalently, every Δ⁰₂-set contains or is disjoint from an infinite low set.

Theorem (Downey, Hirschfeldt, Lempp and Solomon (2001))

There is a Δ_2^0 set D such that neither D nor \overline{D} contains infinite low subset.

- Question 1: Over RCA₀, does SRT²₂ imply RT²₂?
- Question 2: Does SRT_2^2 imply $I\Sigma_2$? How about RT_2^2 ?
- Attempt for Q 1: Show that stable colorings always have a low solution. Or equivalently, every Δ⁰₂-set contains or is disjoint from an infinite low set.

Theorem (Downey, Hirschfeldt, Lempp and Solomon (2001))

There is a Δ_2^0 set D such that neither D nor \overline{D} contains infinite low subset.

- Question 1: Over RCA₀, does SRT²₂ imply RT²₂?
- Question 2: Does SRT_2^2 imply $I\Sigma_2$? How about RT_2^2 ?
- Attempt for Q 1: Show that stable colorings always have a low solution. Or equivalently, every Δ⁰₂-set contains or is disjoint from an infinite low set.

Theorem (Downey, Hirschfeldt, Lempp and Solomon (2001))

There is a Δ_2^0 set D such that neither D nor \overline{D} contains infinite low subset.

Nonstandard Approach

Chong (2005): We should look at nonstandard models of fragments of arithmetic, because:

- DFLS theorem is done on ω, whose proof involves infinite injury method thus requires IΣ₂.
- There is a model of BΣ₂ but not IΣ₂ in which every incomplete Δ⁰₂ set is low.

Theorem (Chong, Slaman and Y (ta1))

Over RCA₀,

 $\begin{aligned} \mathsf{SRT}_2^2 & \Rightarrow \mathsf{RT}_2^2 \\ \mathsf{SRT}_2^2 & \Rightarrow \mathit{I}\Sigma_2. \end{aligned}$

Chong (2005): We should look at nonstandard models of fragments of arithmetic, because:

 DFLS theorem is done on ω, whose proof involves infinite injury method thus requires IΣ₂.

There is a model of BΣ₂ but not IΣ₂ in which every incomplete Δ⁰₂ set is low.

Theorem (Chong, Slaman and Y (ta1))

Over RCA₀,

 $SRT_2^2 \neq RT_2^2$ $SRT_2^2 \neq I\Sigma_2.$

Chong (2005): We should look at nonstandard models of fragments of arithmetic, because:

- DFLS theorem is done on ω, whose proof involves infinite injury method thus requires IΣ₂.
- There is a model of BΣ₂ but not IΣ₂ in which every incomplete Δ₂⁰ set is low.

Theorem (Chong, Slaman and Y (ta1))

Over RCA₀,

 $SRT_{2}^{2} \neq RT_{2}^{2}$ $SRT_{2}^{2} \neq I\Sigma_{2}.$

Chong (2005): We should look at nonstandard models of fragments of arithmetic, because:

- DFLS theorem is done on ω, whose proof involves infinite injury method thus requires IΣ₂.
- There is a model of BΣ₂ but not IΣ₂ in which every incomplete Δ₂⁰ set is low.

Theorem (Chong, Slaman and Y (ta1))

Over RCA₀,

 $\begin{aligned} &\mathsf{SRT}_2^2 \not\Rightarrow \mathsf{RT}_2^2 \\ &\mathsf{SRT}_2^2 \not\Rightarrow \mathit{I}\Sigma_2. \end{aligned}$

It is countable and its first order part satisfies $PA^- + B\Sigma_2$ but not $I\Sigma_2$.

- ω is a Σ_2^0 -cut and there is a Σ_2^0 function $g: \omega \to M$ which is unbounded.
- $\mathcal{M} = \bigcup_{n \in \omega} \mathcal{M}_n$ is a union of chains such that \mathcal{M}_n satisfies full Peano arithmetic.
- **•** Σ_1^0 -reflection property: For each $n \in \omega$, $\mathcal{M}_n \prec_1 \mathcal{M}$;
- Saturation property: Every arithmetical (in *M*) subset of ω is an initial segment of an *M*-finite set.

- It is countable and its first order part satisfies $PA^- + B\Sigma_2$ but not $I\Sigma_2$.
- ω is a Σ_2^0 -cut and there is a Σ_2^0 function $g: \omega \to M$ which is unbounded.
- $\mathcal{M} = \bigcup_{n \in \omega} \mathcal{M}_n$ is a union of chains such that \mathcal{M}_n satisfies full Peano arithmetic.
- **•** Σ_1^0 -reflection property: For each $n \in \omega$, $\mathcal{M}_n \prec_1 \mathcal{M}$;
- Saturation property: Every arithmetical (in *M*) subset of ω is an initial segment of an *M*-finite set.

- It is countable and its first order part satisfies $PA^- + B\Sigma_2$ but not $I\Sigma_2$.
- ω is a Σ_2^0 -cut and there is a Σ_2^0 function $g: \omega \to M$ which is unbounded.
- $\mathcal{M} = \bigcup_{n \in \omega} \mathcal{M}_n$ is a union of chains such that \mathcal{M}_n satisfies full Peano arithmetic.
- **•** Σ_1^0 -reflection property: For each $n \in \omega$, $\mathcal{M}_n \prec_1 \mathcal{M}$;
- Saturation property: Every arithmetical (in *M*) subset of ω is an initial segment of an *M*-finite set.

- It is countable and its first order part satisfies $PA^- + B\Sigma_2$ but not $I\Sigma_2$.
- ω is a Σ_2^0 -cut and there is a Σ_2^0 function $g: \omega \to M$ which is unbounded.
- $\mathcal{M} = \bigcup_{n \in \omega} \mathcal{M}_n$ is a union of chains such that \mathcal{M}_n satisfies full Peano arithmetic.
- Σ_1^0 -reflection property: For each $n \in \omega$, $\mathcal{M}_n \prec_1 \mathcal{M}$;
- Saturation property: Every arithmetical (in *M*) subset of ω is an initial segment of an *M*-finite set.

- It is countable and its first order part satisfies $PA^- + B\Sigma_2$ but not $I\Sigma_2$.
- ω is a Σ_2^0 -cut and there is a Σ_2^0 function $g: \omega \to M$ which is unbounded.
- $\mathcal{M} = \bigcup_{n \in \omega} \mathcal{M}_n$ is a union of chains such that \mathcal{M}_n satisfies full Peano arithmetic.
- Σ_1^0 -reflection property: For each $n \in \omega$, $\mathcal{M}_n \prec_1 \mathcal{M}$;
- Saturation property: Every arithmetical (in *M*) subset of ω is an initial segment of an *M*-finite set.

Technical Remarks: Forcing

- Blocking method: We divide the whole Σ_1 -theory of *G* into ω many blocks: $B_n = \{\varphi_e(G) : e \le g(n)\}$ where $\{\varphi_e : e \in M\}$ is a fixed enumeration of $\Sigma_1^0(G)$ sentences.
- Fix B_n , we first try to force as many formula in *B* true as we can, using certain finite objects. Here we used Seetapun's idea and Σ_1 reflection property.
- For those formulas in *B* which we can't force them true, we want to use a tree U_n to force them false. Here some nonuniformity comes in: If U_n is finite, we force it in one way; otherwise, we use something else.

- Blocking method: We divide the whole Σ_1 -theory of *G* into ω many blocks: $B_n = \{\varphi_e(G) : e \leq g(n)\}$ where $\{\varphi_e : e \in M\}$ is a fixed enumeration of $\Sigma_1^0(G)$ sentences.
- Fix B_n , we first try to force as many formula in *B* true as we can, using certain finite objects. Here we used Seetapun's idea and Σ_1 reflection property.
- For those formulas in *B* which we can't force them true, we want to use a tree U_n to force them false. Here some nonuniformity comes in: If U_n is finite, we force it in one way; otherwise, we use something else.

- Blocking method: We divide the whole Σ_1 -theory of *G* into ω many blocks: $B_n = \{\varphi_e(G) : e \leq g(n)\}$ where $\{\varphi_e : e \in M\}$ is a fixed enumeration of $\Sigma_1^0(G)$ sentences.
- Fix B_n, we first try to force as many formula in B true as we can, using certain finite objects. Here we used Seetapun's idea and Σ₁ reflection property.
- For those formulas in *B* which we can't force them true, we want to use a tree U_n to force them false. Here some nonuniformity comes in: If U_n is finite, we force it in one way; otherwise, we use something else.

- Blocking method: We divide the whole Σ_1 -theory of *G* into ω many blocks: $B_n = \{\varphi_e(G) : e \leq g(n)\}$ where $\{\varphi_e : e \in M\}$ is a fixed enumeration of $\Sigma_1^0(G)$ sentences.
- Fix B_n , we first try to force as many formula in *B* true as we can, using certain finite objects. Here we used Seetapun's idea and Σ_1 reflection property.
- For those formulas in B which we can't force them true, we want to use a tree U_n to force them false. Here some nonuniformity comes in: If U_n is finite, we force it in one way; otherwise, we use something else.

- To decide whether U_n is finite or infinite requires Ø'', however, in M, the information can be coded by an M-finite string, whose n-th-bit tells the truth, whereas the nonstandard bits are "junks" but we don't care.
- With the help of codes, we can use Ø' to carry out the constructions, and that makes the difference between standard and nonstandard models.

(日) (日) (日) (日) (日) (日) (日)

- To decide whether U_n is finite or infinite requires Ø'', however, in M, the information can be coded by an M-finite string, whose n-th-bit tells the truth, whereas the nonstandard bits are "junks" but we don't care.
- With the help of codes, we can use Ø' to carry out the constructions, and that makes the difference between standard and nonstandard models.

(日) (日) (日) (日) (日) (日) (日)

$\mathsf{RT}_2^2 \not\Rightarrow \mathit{I}\Sigma_2.$

- We knew how to satisfy COH and SRT²₂ individually without satisfying *I*Σ₂.
- The difficulty is adding COH would destroy the nice properties of the tailor-made model.
- Need to try our best to keep as much as niceties as we can, and use some trick on coding to make it work.

$$\mathsf{RT}_2^2
i I \Sigma_2.$$

- We knew how to satisfy COH and SRT²₂ individually without satisfying *I*Σ₂.
- The difficulty is adding COH would destroy the nice properties of the tailor-made model.
- Need to try our best to keep as much as niceties as we can, and use some trick on coding to make it work.

$$\mathrm{RT}_2^2
i I \Sigma_2.$$

- We knew how to satisfy COH and SRT²₂ individually without satisfying *I*Σ₂.
- The difficulty is adding COH would destroy the nice properties of the tailor-made model.
- Need to try our best to keep as much as niceties as we can, and use some trick on coding to make it work.

$$\mathrm{RT}_2^2
i I \Sigma_2.$$

- We knew how to satisfy COH and SRT²₂ individually without satisfying *I*Σ₂.
- The difficulty is adding COH would destroy the nice properties of the tailor-made model.
- Need to try our best to keep as much as niceties as we can, and use some trick on coding to make it work.

Open Questions

Question: What happens in ω-model? (Kind of "provability vs. truth" question.)

How about conservation results? E.g., Is RT²₂ or SRT²₂ Π¹₁-conservative over RCA₀?

- Question: What happens in ω-model? (Kind of "provability vs. truth" question.)
- How about conservation results? E.g., Is RT²₂ or SRT²₂ Π¹₁-conservative over RCA₀?

(日) (日) (日) (日) (日) (日) (日)

References

- Simpson, *Subsystems of Second-Order Arithmetic*, (second edition), ASL and CUP 2009.
- 2 Hirschfeldt and Shore, *Combinatorial principles weaker than Ramsey's theorem for pairs*, JSL, 2007.
- 3 Liu Jiayi, RT_2^2 does not imply WKL₀, JSL 2011.
- 4 Chong, Slaman and Yang, Π¹₁-conservation of combinatorial principles weaker than Ramsey's theorem for pairs, Adv in Math 2012.
- 5 Chong, Slaman and Yang, *The metamathematics of stable Ramsey's theorem for pairs*, ta1.