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Ramsey’s Theorem

For A ⊆ N, let [A]n denote the set of all n-element subsets of A.

Theorem (Ramsey (1930))

Any f : [N]n → {0,1, . . . , k − 1} has an infinite homogeneous
set H ⊆ N, namely, f is constant on [H]n.

We will loosely refer such an infinite homogeneous set as a
“solution”.

Notation: The version above is denoted by RTn
k .

Our main focus is on RT2
2 – Ramsey’s Theorem for Pairs.
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One Proof of RT2
2

Let f be a coloring of pairs, say red and blue.
First step: Find an infinite subset C ⊆ ω on which f is
“stable”, i.e., for all x , lim

y∈C,y→∞
f (x , y) exists.

We call such a set C cohesive for f .

Second step: One of
DR = {x ∈ C : x is “eventually red”} and
DB = {x ∈ C : x is “eventually blue”}
must be infinite, say DR.

Obtain a solution from DR.
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COH and SRT2
2

We extract two combinatorial principles out of the proof:

Let R be an infinite set and Rs = {t |(s, t) ∈ R}. A set G is
said to be R-cohesive if for all s, either G ∩ Rs is finite or
G ∩ Rs is finite.

The cohesive principle COH states that for every R, there
is an infinite G that is R-cohesive.

SRT2
2 states that every stable coloring of pairs has a

solution.

(Cholak, Jockusch and Slaman, 2001)

RT2
2 = COH + SRT2
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How complicated is the homogeneous set H?

Is COH or SRT2
2 as strong as RT2

2?

What are the logical consequences/strength of Ramsey’s
Theorem?

We need to introduce hierarchies of first- and second-order
arithmetic.
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Arithmetical Hierarchy

Language of first order Peano Arithmetic: 0, S, +, ×, <;
variables and quantifiers are intended for individuals.

Formulas are classified by the number of alternating blocks
of quantifiers: Σ0

n and Π0
n. (We always allow parameters.)

We often talk about ∆0
n formulas which have two equivalent

forms, one Σ0
n, one Π0

n.

Definable sets are classified by their defining formulas.

(Slogan: “Computability is Definability”: Recursive=∆0
1, and

recursively enumerable sets = Σ0
1 sets etc.)
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Fragments of First Order Peano Arithmetic

Let IΣn denote the induction schema for Σ0
n-formulas; and

BΣn denote the Bounding Principle for Σ0
n formulas.

(Kirby and Paris, 1977) · · · ⇒ IΣn+1 ⇒ BΣn+1 ⇒ IΣn ⇒ . . .

(Slaman, 2004) I∆n ⇔ BΣn.

(Note: When n = 1 we require the language has
exponential function.)
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Fragments of Second Order Arithmetic

Two-sorted language: (first order part) + variables and
quantifiers for sets.

RCA0: Σ0
1-induction and ∆0

1-comprehension:
For ϕ ∈ ∆0

1, ∃X∀n(n ∈ X ↔ ϕ(n)).

WKL0: RCA0 and every infinite binary tree has an infinite
path.

ACA0: RCA0 and for ϕ arithmetical, ∃X∀n(n ∈ X ↔ ϕ(n)).

(ATR0 and Π1
1-CA0.) Π1

1-formulas are of the form ∀Xϕ
where ϕ is arithmetical.
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Remarks on Axioms in Reverse Math

They all assert the existence of certain sets.

Some are measured by syntactical complexity, e.g. RCA0
or ACA0.

Some are from the analysis of mathematical tools, e.g.
WKL0 corresponds to Compactness Theorem.
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Basic Models

A modelM of second-order arithmetic consists
(M,0,S,+,×, <,X ) where (M,0,S,+,×, <) is its
first-order part and the set variables are interpreted as
members of X .

Models of RCA0: Its second-order part is closed under ≤T
and Turing join, namely a Turing ideal.

In the (minimal) model of RCA0, X only consists of
M-recursive sets.

(RCA0 is the place to do constructive/finitary mathematics.)
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Remarks on Goals of Reversion

Goal of Reverse Mathematics: What set existence axioms
are needed to prove the theorems of ordinary, classical
(countable) mathematics?

Goal of Reverse Recursion Theory: What amount of
induction are needed to prove the theorems of Recursion
Theory, in particular, theorems about r.e. degrees.

Motivation: To achieve these goals, we have to discover
new proofs.
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Rephrasing the Motivating Questions

Question: Suppose f is recursive. What is the minimal
syntactical complexity of a solution?

Question: Which system in Reverse Mathematics does
Ramsey’s Theorem correspond? E.g., does RT2

2 imply
ACA0?

What are the first-order consequences of Ramsey’s
Theorem? E.g., does RT2

2 imply IΣ2?

Does SRT2
2 imply RT2

2? In other words, if X contains
solutions for all stable colorings, how about for general
colorings?
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Earlier Results: (I)

Theorem (Jockusch, 1972)

1 Every recursive coloring f has a Π0
2 solution.

2 There is a recursive f : [N]3 → {0,1} all of whose solutions
compute 0′.

3 There is a recursive coloring of pairs which has no Σ0
2

solutions.

Corollary

Over RCA0,
ACA0 ⇔ RT3

2 ⇔ RTn
k .

ACA0 ⇒ RT2
2 and WKL0 6⇒ RT2

2.



Earlier Results: (I)

Theorem (Jockusch, 1972)

1 Every recursive coloring f has a Π0
2 solution.

2 There is a recursive f : [N]3 → {0,1} all of whose solutions
compute 0′.

3 There is a recursive coloring of pairs which has no Σ0
2

solutions.

Corollary

Over RCA0,
ACA0 ⇔ RT3

2 ⇔ RTn
k .

ACA0 ⇒ RT2
2 and WKL0 6⇒ RT2

2.



Earlier Results: (I)

Theorem (Jockusch, 1972)

1 Every recursive coloring f has a Π0
2 solution.

2 There is a recursive f : [N]3 → {0,1} all of whose solutions
compute 0′.

3 There is a recursive coloring of pairs which has no Σ0
2

solutions.

Corollary

Over RCA0,
ACA0 ⇔ RT3

2 ⇔ RTn
k .

ACA0 ⇒ RT2
2 and WKL0 6⇒ RT2

2.



Earlier Results: (I)

Theorem (Jockusch, 1972)

1 Every recursive coloring f has a Π0
2 solution.

2 There is a recursive f : [N]3 → {0,1} all of whose solutions
compute 0′.

3 There is a recursive coloring of pairs which has no Σ0
2

solutions.

Corollary

Over RCA0,
ACA0 ⇔ RT3

2 ⇔ RTn
k .

ACA0 ⇒ RT2
2 and WKL0 6⇒ RT2

2.



Earlier Results: (II)

Theorem (Hirst (1987))

Over RCA0,
(S)RT2

2 ⇒ BΣ2.

(This tells us a lower bound of its first order strength.)

Theorem (Seetapun and Slaman 1995)

There is a Turing ideal J such that 0′ 6∈ J and for every
f : [N]2 → {0,1} in J, there is a solution in J.

Corollary

Over RCA0,

(ACA0 ⇒ RT2
2 and) RT2

2 6⇒ ACA0.
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Conservation Results

Harrington observed that WKL0 is Π1
1-conservative over

RCA0. i.e., any Π1
1-statement that is provable in WKL0 is

already provable in RCA0.

Conservation results are used to measure the weakness of
the strength of a theorem.

Theorem (Cholak, Jochusch and Slaman (2001))

RT2
2 is Π1

1-conservative over RCA0 + IΣ2.

Corollary

Over RCA0,

(RT2
2 ⇒ BΣ2 and) RT2

2 6⇒ IΣ3.
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RT2
2 is Π1

1-conservative over RCA0 + IΣ2.

Corollary

Over RCA0,

(RT2
2 ⇒ BΣ2 and) RT2

2 6⇒ IΣ3.



Combinatorics below RT2
2

Hirschfeldt and Shore [2007], Combinatorial principles weaker
than Ramsey’s theorem for pairs.

In particular, COH does not imply RT2
2.



Resent Results

Theorem (Jiayi Liu (2011))
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RT2
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Theorem (Chong, Slaman and Y (2012))

Over RCA0, COH is Π1
1-conservative over RCA0 + BΣ2.
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Remaining Questions and Obstacles

Question 1: Over RCA0, does SRT2
2 imply RT2

2?

Question 2: Does SRT2
2 imply IΣ2? How about RT2

2?

Attempt for Q 1: Show that stable colorings always have a
low solution. Or equivalently, every ∆0

2-set contains or is
disjoint from an infinite low set.

Theorem (Downey, Hirschfeldt, Lempp and Solomon (2001))

There is a ∆0
2 set D such that neither D nor D contains infinite

low subset.
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Nonstandard Approach

Chong (2005): We should look at nonstandard models of
fragments of arithmetic, because:

DFLS theorem is done on ω, whose proof involves infinite
injury method thus requires IΣ2.

There is a model of BΣ2 but not IΣ2 in which every
incomplete ∆0

2 set is low.

Theorem (Chong, Slaman and Y (ta1))
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SRT2

2 6⇒ RT2
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Technical Remarks: A Tailor-Made Model

It is countable and its first order part satisfies PA− + BΣ2
but not IΣ2.

ω is a Σ0
2-cut and there is a Σ0

2 function g : ω → M which is
unbounded.

M =
⋃

n∈ωMn is a union of chains such thatMn satisfies
full Peano arithmetic.

Σ0
1-reflection property: For each n ∈ ω,Mn ≺1 M;

Saturation property: Every arithmetical (inM) subset of ω
is an initial segment of anM-finite set.
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Technical Remarks: Forcing

Given a ∆0
2 set A, we construct an infinite G subset of either A

or A, such that ∅′ can determine the Σ1-theory of G.

Blocking method: We divide the whole Σ1-theory of G into
ω many blocks: Bn = {ϕe(G) : e ≤ g(n)} where
{ϕe : e ∈ M} is a fixed enumeration of Σ0

1(G) sentences.

Fix Bn, we first try to force as many formula in B true as we
can, using certain finite objects. Here we used Seetapun’s
idea and Σ1 reflection property.

For those formulas in B which we can’t force them true, we
want to use a tree Un to force them false. Here some
nonuniformity comes in: If Un is finite, we force it in one
way; otherwise, we use something else.
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Technical Remarks: Codes

To decide whether Un is finite or infinite requires ∅′′,
however, inM, the information can be coded by an
M-finite string, whose n-th-bit tells the truth, whereas the
nonstandard bits are “junks” but we don’t care.

With the help of codes, we can use ∅′ to carry out the
constructions, and that makes the difference between
standard and nonstandard models.
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More Resent Results

Theorem (Chong, Slaman and Y (ta2))

RT2
2 6⇒ IΣ2.

We knew how to satisfy COH and SRT2
2 individually without

satisfying IΣ2.

The difficulty is adding COH would destroy the nice
properties of the tailor-made model.

Need to try our best to keep as much as niceties as we
can, and use some trick on coding to make it work.
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Open Questions

Question: What happens in ω-model? (Kind of “provability
vs. truth” question.)

How about conservation results? E.g., Is RT2
2 or SRT2

2
Π1

1-conservative over RCA0?
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