Locally decodable codes: from computational complexity to cloud computing

Sergey Yekhanin
Microsoft Research
Error-correcting codes: paradigm

The paradigm dates back to 1940s (Shannon / Hamming)
Local decoding: paradigm

Local decoder runs in time much smaller than the message length!

- First account: Reed’s decoder for Muller’s codes (1954)
- Implicit use: (1950s-1990s)
- Formal definition and systematic study (late 1990s) [Levin’95, STV’98, KT’00]
 - Original applications in computational complexity theory
 - Cryptography
 - Most recently used in practice to provide reliability in distributed storage
Local decoding: example

Message length: $k = 3$
Codeword length: $n = 7$
Corrupted locations: $e = 3$
Locality: $r = 2$
Local decoding: example

Message length: $k = 3$
Codeword length: $n = 7$
Corrupted locations: $e = 3$
Locality: $r = 2$
Locally decodable codes

Definition: A code $E: F_q^k \rightarrow F_q^n$ is r-locally decodable, if for every message X, each X_i can be recovered from reading some r symbols of $E(X)$, even after up to e coordinates of $E(X)$ are corrupted.

- (Erasures.) Decoder is aware of erased locations. Output is always correct.
- (Errors.) Decoder is randomized. Output is correct with probability 99%.

```
k symbol message
0 1 ... 0 1
n symbol codeword
0 0 1 0 1 ... 0 1 1
```

Decoder reads only r symbols

Noise
Locally decodable codes

Goal:
Understand the true shape of the tradeoff between redundancy $n - k$ and locality r, for different settings of e (e.g., $e = \delta n, n^\epsilon, O(1)$.)

Taxonomy of known families of LDCs

- Multiplicity codes
- Matching vector codes
- Projective geometry codes
- Local reconstruction codes
- Reed Muller codes
Plan

• Part I: (Computational complexity)
 • Average case hardness
 • An avg. case hard language in EXP (unless EXP ⊆ BPP)
 • Construction of LDCs
 • Open questions

• Part II: (Distributed data storage)
 • Erasure coding for data storage
 • LDCs for data storage
 • Constructions and limitations
 • Open questions
Part I: Computational complexity
Average case complexity

• A problem is hard-on-average if any efficient algorithm errs on 10% of the inputs.
• Establishing hardness-on-average for a problem in NP is a major problem.
• Below we establish hardness-on-average for a problem in EXP, assuming EXP $\not\subseteq$ BPP.

Construction [STV]:

Level k is a string X of length 2^k

L is EXP-complete

\[E: F_2^k \rightarrow F_2^n \]
\[n = \text{poly}(k), \]
\[r = (\log k)^c, \]
\[e = n/10. \]

X

\[
\begin{array}{cccc}
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
\end{array}
\]

$E(X)$

\[
\begin{array}{cccc}
1 & 1 & 1 & 0 & 1 \\
\end{array}
\]

L' is in EXP

Theorem: If there is an efficient algorithm that errs on <10% of L'; then EXP \subseteq BPP.
Average case complexity

Theorem: If there is an efficient algorithm that errs on <10% of L'; then $\text{EXP} \subseteq \text{BPP}$.

Proof: We obtain a BPP algorithm for L:

- Let A be the algorithm that errs on <10% of L'; A gives us access to the corrupted encoding $E(X)$.
- To decide if X_i invoke the local decoder for $E(X)$.
- Time complexity is $(\log 2^k)^c \cdot \text{poly}(k) = \text{poly}(k)$.
- Output is correct with probability 99%.

L is EXP-complete

L' is in EXP

E: $F_2^k \rightarrow F_2^n$

$n = \text{poly}(k)$,

$r = (\log k)^c$,

$e = n/10.$
Reed Muller codes

- Parameters: $q, m, d = (1 - 4\delta)q$.
- Codewords: evaluations of degree d polynomials in m variables over F_q.
- Polynomial $f \in F_q[z_1, \ldots, z_m]$, $\deg f < d$ yields a codeword: $\langle f(\tilde{x}) \rangle_{\tilde{x} \in F_q^m}$
- Parameters: $n = q^m$, $k = \binom{m + d}{m}$, $r = q - 1$, $e = \delta n$.
Reed Muller codes: local decoding

- **Key observation:** Restriction of a codeword to an affine line yields an evaluation of a univariate polynomial $f|_L$ of degree at most d.

- To recover the value at \bar{x}:
 - Pick a random affine line through \bar{x}.
 - Do noisy polynomial interpolation.

- Locally decodable code: Decoder reads $q - 1$ random locations.
Reed Muller codes: parameters

\[n = q^m, \quad k = \binom{m+d}{m}, \quad d = (1-4\delta)q, \quad r = q-1, \quad e = \delta n. \]

Setting parameters:

- \(q = O(1), \ m \to \infty: \) \(r = O(1), \ n = \exp\left(\frac{1}{kr-1}\right). \)
- \(q = m^2: \) \(r = (\log k)^2, \ n = \text{poly}(k). \)
- \(q \to \infty, \ m = O(1): \) \(r = k^\epsilon, \ n = O(k). \)

Better codes are known

Reducing codeword length is a major open question.
Part II: Distributed storage
Data storage

• Store data reliably
• Keep it readily available for users
Data storage: Replication

- Store data reliably
- Keep it readily available for users

- Very large overhead
- Moderate reliability
- Local recovery: Lose one machine, access one
Data storage: Erasure coding

- Store data reliably
- Keep it readily available for users
- Low overhead
- High reliability
- No local recovery: Loose one machine, access k

k data chunks | $n-k$ parity chunks

Need: Erasure codes with local decoding
Codes for data storage

- **Goals:**
 - (Cost) minimize the number of parities.
 - (Reliability) tolerate any pattern of $h+1$ simultaneous failures.
 - (Availability) recover any data symbol by accessing at most r other symbols
 - (Computational efficiency) use a small finite field to define parities.
Local reconstruction codes

Def: An (r,h) – Local Reconstruction Code (LRC) encodes k symbols to n symbols, and

- Corrects any pattern of $h+1$ simultaneous failures;
- Recovers any single erased data symbol by accessing at most r other symbols.
Local reconstruction codes

- **Def:** An \((r,h)\) – Local Reconstruction Code (LRC) encodes \(k\) symbols to \(n\) symbols, and
 - Corrects any pattern of \(h+1\) simultaneous failures;
 - Recovers any single erased data symbol by accessing at most \(r\) other symbols.

- **Theorem [GHSY]:** In any \((r,h)\) – (LRC), redundancy \(n-k\) satisfies \(n - k \geq \left\lfloor \frac{k}{r} \right\rfloor + h\).
Local reconstruction codes

• **Def**: An \((r,h) – \) Local Reconstruction Code (LRC) encodes \(k\) symbols to \(n\) symbols, and
 - Corrects any pattern of \(h+1\) simultaneous failures;
 - Recovers any single erased data symbol by accessing at most \(r\) other symbols.

• **Theorem [GHSY]**: In any \((r,h) – \) (LRC), redundancy \(n-k\) satisfies \(n - k \geq \left\lceil \frac{k}{r} \right\rceil + h\).

• **Theorem [GHSY]**: If \(r \mid k\) and \(h < r+1\); then any \((r,h) – \) LRC has the following topology:
Local reconstruction codes

- **Def:** An \((r,h)\) – Local Reconstruction Code (LRC) encodes \(k\) symbols to \(n\) symbols, and
 - Corrects any pattern of \(h+1\) simultaneous failures;
 - Recovers any single erased data symbol by accessing at most \(r\) other symbols.

- **Theorem [GHSY]:** In any \((r,h)\) – (LRC), redundancy \(n-k\) satisfies \(n - k \geq \left\lceil \frac{k}{r} \right\rceil + h\).

- **Theorem [GHSY]:** If \(r \mid k\) and \(h < r+1\); then any \((r,h)\) – LRC has the following topology:

- **Fact:** There exist \((r,h)\) – LRCs with optimal redundancy over a field of size \(k+h\).
Reliability

Set $k=8$, $r=4$, and $h=3$.
Reliability

Set $k=8$, $r=4$, and $h=3$.

- All 4-failure patterns are correctable.
Reliability

Set $k=8$, $r=4$, and $h=3$.

- All 4-failure patterns are correctable.
- Some 5-failure patterns are not correctable.
Set \(k=8, \ r=4, \) and \(h=3. \)

- All 4-failure patterns are correctable.
- Some 5-failure patterns are not correctable.
- Other 5-failure patterns might be correctable.
Reliability

Set $k=8$, $r=4$, and $h=3$.

- All 4-failure patterns are correctable.
- Some 5-failure patterns are not correctable.
- Other 5-failure patterns might be correctable.
Combinatorics of correctable failure patterns

Def: A regular failure pattern for a \((r,h)\)-LRC is a pattern that can be obtained by failing one symbol in each local group and \(h\) extra symbols.

Theorem:
- Every failure pattern that is not dominated by a regular failure pattern is not correctable by any LRC.
- There exist LRCs that correct all regular failure patterns.
Maximally recoverable codes

Def: An \((r,h)\)-LRC is maximally recoverable if it corrects all regular failure patterns.

Theorem: Maximally reliable \((r,h)\)-LRCs exist.

Proof sketch: Pick the coefficients in heavy parities at random from a large finite field.

Asymptotic setting: \(h = O(1), \ r = O(1), \ k \rightarrow \infty. \)

Random choice needs a field of size at least: \(\Omega(k^{h-1}). \)

The tradeoff: Larger fields allow for more reliable codes up to maximal recoverability.

We want both: small field size (efficiency) and maximal recoverability.
Explicit maximally recoverable codes

Theorem[GHJY]: There exist maximally recoverable \((r,h)\)-LRC over a field of size $c k \left[(h-1) \left(1 - \frac{1}{2^r} \right) \right]$.

Comparison:
- Our alphabet grows as $O(k^{h-1})$ or slower.
- Beats random codes for small h and large h.
- Our only lower bound for the alphabet size thus far is $k+1$ independent of h.
Code construction

We use dual constraints to specify the code.

\[
\begin{align*}
&\alpha_{ij} \\
&\alpha_{ij}^2 \\
&\alpha_{ij}^2 \\
&\ldots \\
\end{align*}
\]

Element \(\alpha_{ij} \) appears in the j-th column of the i-th group.

We consider a sequence field extensions \(F_2 \subseteq F_{2a} \subseteq F_{2b} \).

\{\xi_j\} \subseteq F_{2a} \text{ form a basis over } F_2.

\{\lambda_i\} \subseteq F_{2b} \text{ are } h\text{-independent over } F_{2a}.

\alpha_{ij} = \xi_j \times \lambda_i.
Erasure correction

$k=8, r=4, h=2.$

\[
\begin{array}{cccccccc}
\times & \times & x_1 & x_2 & x_3 & x_4 & L_1 & x_5 & \times & \times & x_6 & x_7 & x_8 & L_2 & H_1 & H_2 & H_3 \\
1 & 1 & 1 & 1 & 1 & 1 & & 1 & 1 & 1 & 1 & 1 & 1 & & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{ccc}
\alpha_{11} & \alpha_{12} & \alpha_{21} & \alpha_{22} & \alpha_{31} \\
\alpha_{11}^2 & \alpha_{12}^2 & \alpha_{21}^2 & \alpha_{22}^2 & \alpha_{31}^2 \\
\alpha_{11}^4 & \alpha_{12}^4 & \alpha_{21}^4 & \alpha_{22}^4 & \alpha_{31}^4 \\
\end{array}
\]

\[
\begin{array}{ccc}
\alpha_{11} + \alpha_{12} & \alpha_{21} + \alpha_{22} & \alpha_{31} \\
\alpha_{11}^2 + \alpha_{12}^2 & \alpha_{21}^2 + \alpha_{22}^2 & \alpha_{31}^2 \\
\alpha_{11}^4 + \alpha_{12}^4 & \alpha_{21}^4 + \alpha_{22}^4 & \alpha_{31}^4 \\
\end{array}
\]

\[
\begin{array}{ccc}
(\alpha_{11} + \alpha_{12}) & (\alpha_{21} + \alpha_{22}) & \alpha_{31} \\
(\alpha_{11} + \alpha_{12})^2 & (\alpha_{21} + \alpha_{22})^2 & \alpha_{31}^2 \\
(\alpha_{11} + \alpha_{12})^4 & (\alpha_{21} + \alpha_{22})^4 & \alpha_{31}^4 \\
\end{array}
\]

\[
\begin{array}{ccc}
(\xi_1 + \xi_2) \times \lambda_1 & (\xi_1 + \xi_2) \times \lambda_2 & \xi_1 \times \lambda_3 \\
\end{array}
\]
Looking forward

The main challenge in LRC design is to obtain maximally reliable codes over small finite fields. Empirical evidence suggests that there is a tradeoff between reliability and computational efficiency.

Open questions:
• Study the tradeoff between redundancy and locality.
• Develop tight bounds for redundancy when e is a constant larger than 1.