Locally decodable codes:

from computational complexity to cloud computing

Error-correcting codes: paradigm

X € Fk E(X) € F} E(X) +noise X
0110001 Eememmd 011000100101 01 00 10010 T» 0110001

)
]]

Corrupts up to e
coordinates.

The paradigm dates back to 1940s (Shannon / Hamming)

_ocal decoding: paradigm

X € F¥ E(X) € FI E(X) +noise X;
0110001 — 011000100101 — 01 00 10010 — 1

Encoder Channel Loz
Decoder

Corruptsup to e Reads up to r
coordinates. coordinates.

Local decoder runs in time much smaller than the message length!

« First account: Reed’s decoder for Muller’s codes (1954)
« Implicit use: (1950s-1990s)

« Formal definition and systematic study (late 1990s) [Levin'95, STV'98, KT'00]
= Original applications in computational complexity theory

= Cryptography
= Most recently used in practice to provide reliability in distributed storage

Local decoding: example

E(X)

XXX,

Message length: k = 3
Codeword length: n = 7
Corrupted locations: e = 3
Locality: r = 2

Local decoding: example

E(X)

—

Message length: k = 3
Codeword length: n = 7
Corrupted locations: e = 3

Locality: r = 2

Locally decodable codes

Definition: A code E: Ff — F;* is r-locally decodable, if for every message X,

each X; can be recovered from reading some r symbols of E(X), even after up
to e coordinates of E(X) are corrupted.

« (Erasures.) Decoder is aware of erased locations. Output is always correct.
« (Errors.) Decoder is randomized. Output is correct with probability 99%.

k symbol message

01 .. 0|1

n symbol codeword ﬂ Noise

0/010/1 .. |01

Decoder reads only r symbols

Locally decodable codes

Goal:
Understand the true shape of the tradeoff between redundancy n — k and
locality r, for different settings of e (e.g., e = 6n, n€,0(1).)

7,. N - -
k€ : Multiplicity
5 : codes
Local | . e
c reconst- | | "TOISCUVE iR peed Muller
(log k) ruction geometry codes
codes | : codes
: Matching
0(1) : vector
; : codes
0(1) né on 5

e

Taxonomy of known families of LDCs

Plan

« Part I: (Computational complexity)
 Average case hardness
 An avg. case hard language in EXP (unless EXP < BPP)
» Construction of LDCs

» Open questions

» Part II: (Distributed data storage)
 Erasure coding for data storage
 LDCs for data storage
« Constructions and limitations

» Open questions

Part I: Computational complexity

Average case complexity

« A problem is hard-on-average if any efficient algorithm errs on 10% of the inputs.
« Establishing hardness-on-average for a problem in NP is a major problem.

« Below we establish hardness-on-average for a problem in EXP, assuming EXP & BPP.

Construction [STV]:

E(X)
. X . ok n
Level k is E: F)y - F,
a string X of m | n = poly(k),
length 2k r = (log k)C,
e =n/10.
L is EXP-complete L' isin EXP

Theorem: If there is an efficient algorithm that errs on <10% of L’; then EXP < BPP.

Average case complexity

Theorem: If there is an efficient algorithm that errs on <10% of L’; then EXP < BPP.
Proof: We obtain a BPP algorithm for L:

« Let A be the algorithm that errs on <10% of L’;
A gives us access to the corrupted encoding E (X).

» To decide if X; invoke the local decoder for E(X).
« Time complexity is (log 2%)¢* poly(k) = poly(k).

* Output is correct with probability 99%.

E(X)
—> n = poly(k),
r = (log k)¢,
e =n/10.

L is EXP-complete L' isin EXP

Reed Muller codes

Parameters: q,m,d = (1 — 49)q.

Codewords: evaluations of degree d polynomials in m variables over F,.

Polynomial f € F,[z, ...,z], deg f < d yields a codeword: (f (f»fngln

m+d

"), r=q—1, e=n.

Parameters: n=q™, k= (

Reed Muller codes: local decoding

« Key observation: Restriction of a codeword to an affine line yields an
evaluation of a univariate polynomial f|, of degree at most d.

« To recover the value at x:
— Pick a random affine line through x.
— Do noisy polynomial interpolation.

* Locally decodable code: Decoder reads g — 1 random locations.

Reed Muller codes: parameters

n=qm, k=(m+d), d=(1-49)q, r=q—1, e = on.

Setting parameters:

1
« q=0(1), moo: r=0(01), n= exp(km). Better
codes are

e g =m? : = (log k)%, n = poly(k).
q r = (logk)“, n = poly(k) hown

* qo oo, m=0(1): r=k¢ n=0(k).

Reducing codeword length is a major open question.

Part 11: Distributed storage

Data storage

* Store data reliably
VL Keep it readily available for users

.t"UAX

oy y /
-

Data storage: Replication

_ * Store data reliably
YT T * Keep it readily available for users

p2A%

: 1 L
fJ . W/‘Am

/@\

~—__ ® \ery large overhead
e Moderate reliability

— : = ® Local recovery:
Eq Lose one machine, access one
0 0
@.

Data storage: Erasure coding

e Store data reliably

fo— * Keep it readily available for users
15
g 7 gt e ~~ * Low overhead

* High reliability

v v v v < v
Eq Eq Eq Eq Eq Eq * No local recovery:
Z Z Z Z Z Z Loose one machine, access k

k data chunks n-k parity chunks

Need: Erasure codes with local decoding

Codes for data storage

JaEEp—neE
U EW ¢ ¢ E

- Goals:
¢ (Cost) minimize the number of parities.
* (Reliability) tolerate any pattern of h+1 simultaneous failures.
* (Availability) recover any data symbol by accessing at most r other symbols

« (Computational efficiency) use a small finite field to define parities.

|_ocal reconstruction codes

 Def: An (r,h) — Local Reconstruction Code (LRC) encodes k symbols to n symbols, and
« Corrects any pattern of h+1 simultaneous failures;

» Recovers any single erased data symbol by accessing at most r other symbols.

|_ocal reconstruction codes

 Def: An (r,h) — Local Reconstruction Code (LRC) encodes k symbols to n symbols, and
« Corrects any pattern of h+1 simultaneous failures;

» Recovers any single erased data symbol by accessing at most r other symbols.

« Theorem[GHSY]: In any (r,h) — (LRC), redundancy n-k satisfies n — k > [ﬂ + h.

|_ocal reconstruction codes

 Def: An (r,h) — Local Reconstruction Code (LRC) encodes k symbols to n symbols, and
« Corrects any pattern of h+1 simultaneous failures;

» Recovers any single erased data symbol by accessing at most r other symbols.
« Theorem[GHSY]: In any (r,h) — (LRC), redundancy n-k satisfies n — k > [ﬂ + h.

« Theorem[GHSY]: If r | k and h<r+1; then any (r,h) — LRC has the following topology:

- <:| Local

group
Data symbols ! y - - -
B

Light N
parities

Heavy | N

parities 4

|_ocal reconstruction codes

 Def: An (r,h) — Local Reconstruction Code (LRC) encodes k symbols to n symbols, and
« Corrects any pattern of h+1 simultaneous failures;

» Recovers any single erased data symbol by accessing at most r other symbols.
« Theorem[GHSY]: In any (r,h) — (LRC), redundancy n-k satisfies n — k > H + h.

« Theorem[GHSY]: If r | k and h<r+1; then any (r,h) — LRC has the following topology:

Light N
parities 4
Data symbols ¢ D> - - -

= — |
parities 4

« Fact: There exist (r,h) — LRCs with optimal redundancy over a field of size k+h.

<:| Local

group

Reliability

Set k=8, r=4, and h=3.

Reliability

Set k=8, r=4, and h=3.

« All 4-failure patterns are correctable.

Reliability

Set k=8, r=4, and h=3.

« All 4-failure patterns are correctable.

« Some 5-failure patterns are not correctable.

Reliability

Set k=8, r=4, and h=3.

« All 4-failure patterns are correctable.
« Some 5-failure patterns are not correctable.

« Other 5-failure patterns might be correctable.

Reliability

Set k=8, r=4, and h=3.

« All 4-failure patterns are correctable.
« Some 5-failure patterns are not correctable.

« Other 5-failure patterns might be correctable.

Combinatorics of correctable failure patterns

Def: A regular failure pattern for a (r,h)-LRC is a pattern that can be obtained by failing
one symbol in each local group and h extra symbols.

Theorem:

« Every failure pattern that is not dominated by a reqular failure pattern is not
correctable by any LRC.

« There exist LRCs that correct all regular failure patterns.

Maximally recoverable codes

Def: An (r,h)-LRC is maximally recoverable if it corrects all regular failure patterns.

Theorem: Maximally reliable (r,h)-LRCs exist.

Proof sketch: Pick the coefficients in heavy parities at random from a large finite field.

Asymptotic setting: h = 0(1), r = 0(1), k — oo.

Random choice needs a field of size at least: Q (k"™ 1).

The tradeoff: Larger fields allow for more reliable codes up to maximal recoverability.

We want both: small field size (efficiency) and maximal recoverability.

Explicit maximally recoverable codes

Theorem[GHIY]: There exist maximally recoverable (r,h)-LRC over a field of size

ekl n=0(1-77)]

Comparison:

- Our alphabet grows as 0(k"~1) or slower.
« Beats random codes for small h and large h.

« Our only lower bound for the alphabet size thus far is k+1 independent of h.

RN R

Code construction

We use dual constraints to specify the code. .
~+1 local groups.

X1 X2 v X Ly Xg—r Xg-r+1 - Xp Lgy Hy Hp

Element «;; appears in the j-th column of the i-th group.

5 We consider a sequence field extensions F, € Fya S F,».
;i
J :
{¢;} € F,a form a basis over F,.
{A;} € F,» are h-independent over F,a.
2h—1

a:: aij=€jXAi.

Erasure correction
k=8, r=4, h=2.

*KX X X

X1 X2 X3 X3 L1 Xs Xg X7 Xg LZ H1 Hz H3

1 1 1 1 1 1 1
1 1 1 1 1 11

@11 @12 @21 (22 431 @11 Q12 A1 Az A3

afy ag afy a3, az afy ai, az ai; az;

aty af, azy @5, az; aty af, az a3, az;

11t Azt 31 (aq1taq;) (ap1taz,) asg
2,2 2 .2 2 2 2 2
apptag; aztag; azq (aq1taq;) (ap1taz,)* ajzg
4 , 4 4 | 4 4 4 4 4
a1+, Aytay; 31 (a11+a12) (aptaq;)* aszyg

(a11ta12) (azi+az;) asg » (E1+&)xA (E+H&E)xA, XA

Looking forward

The main challenge in LRC design is to obtain maximally reliable codes over small finite
fields. Empirical evidence suggests that there is a tradeoff between reliability and
computational efficiency.

Open questions:

 Study the tradeoff between redundancy and locality.

« Develop tight bounds for redundancy when € is a constant larger than 1.

